Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

34\left(49+x^{2}-\frac{49}{4}\right)=27\left(49+4x^{2}-16\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 918x, the least common multiple of 27x,34x.
34\left(\frac{147}{4}+x^{2}\right)=27\left(49+4x^{2}-16\right)
Subtract \frac{49}{4} from 49 to get \frac{147}{4}.
\frac{2499}{2}+34x^{2}=27\left(49+4x^{2}-16\right)
Use the distributive property to multiply 34 by \frac{147}{4}+x^{2}.
\frac{2499}{2}+34x^{2}=27\left(33+4x^{2}\right)
Subtract 16 from 49 to get 33.
\frac{2499}{2}+34x^{2}=891+108x^{2}
Use the distributive property to multiply 27 by 33+4x^{2}.
\frac{2499}{2}+34x^{2}-108x^{2}=891
Subtract 108x^{2} from both sides.
\frac{2499}{2}-74x^{2}=891
Combine 34x^{2} and -108x^{2} to get -74x^{2}.
-74x^{2}=891-\frac{2499}{2}
Subtract \frac{2499}{2} from both sides.
-74x^{2}=-\frac{717}{2}
Subtract \frac{2499}{2} from 891 to get -\frac{717}{2}.
x^{2}=\frac{-\frac{717}{2}}{-74}
Divide both sides by -74.
x^{2}=\frac{-717}{2\left(-74\right)}
Express \frac{-\frac{717}{2}}{-74} as a single fraction.
x^{2}=\frac{-717}{-148}
Multiply 2 and -74 to get -148.
x^{2}=\frac{717}{148}
Fraction \frac{-717}{-148} can be simplified to \frac{717}{148} by removing the negative sign from both the numerator and the denominator.
x=\frac{\sqrt{26529}}{74} x=-\frac{\sqrt{26529}}{74}
Take the square root of both sides of the equation.
34\left(49+x^{2}-\frac{49}{4}\right)=27\left(49+4x^{2}-16\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 918x, the least common multiple of 27x,34x.
34\left(\frac{147}{4}+x^{2}\right)=27\left(49+4x^{2}-16\right)
Subtract \frac{49}{4} from 49 to get \frac{147}{4}.
\frac{2499}{2}+34x^{2}=27\left(49+4x^{2}-16\right)
Use the distributive property to multiply 34 by \frac{147}{4}+x^{2}.
\frac{2499}{2}+34x^{2}=27\left(33+4x^{2}\right)
Subtract 16 from 49 to get 33.
\frac{2499}{2}+34x^{2}=891+108x^{2}
Use the distributive property to multiply 27 by 33+4x^{2}.
\frac{2499}{2}+34x^{2}-891=108x^{2}
Subtract 891 from both sides.
\frac{717}{2}+34x^{2}=108x^{2}
Subtract 891 from \frac{2499}{2} to get \frac{717}{2}.
\frac{717}{2}+34x^{2}-108x^{2}=0
Subtract 108x^{2} from both sides.
\frac{717}{2}-74x^{2}=0
Combine 34x^{2} and -108x^{2} to get -74x^{2}.
-74x^{2}+\frac{717}{2}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-74\right)\times \frac{717}{2}}}{2\left(-74\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -74 for a, 0 for b, and \frac{717}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-74\right)\times \frac{717}{2}}}{2\left(-74\right)}
Square 0.
x=\frac{0±\sqrt{296\times \frac{717}{2}}}{2\left(-74\right)}
Multiply -4 times -74.
x=\frac{0±\sqrt{106116}}{2\left(-74\right)}
Multiply 296 times \frac{717}{2}.
x=\frac{0±2\sqrt{26529}}{2\left(-74\right)}
Take the square root of 106116.
x=\frac{0±2\sqrt{26529}}{-148}
Multiply 2 times -74.
x=-\frac{\sqrt{26529}}{74}
Now solve the equation x=\frac{0±2\sqrt{26529}}{-148} when ± is plus.
x=\frac{\sqrt{26529}}{74}
Now solve the equation x=\frac{0±2\sqrt{26529}}{-148} when ± is minus.
x=-\frac{\sqrt{26529}}{74} x=\frac{\sqrt{26529}}{74}
The equation is now solved.