Evaluate
\frac{49}{26}\approx 1.884615385
Factor
\frac{7 ^ {2}}{2 \cdot 13} = 1\frac{23}{26} = 1.8846153846153846
Share
Copied to clipboard
\begin{array}{l}\phantom{26)}\phantom{1}\\26\overline{)49}\\\end{array}
Use the 1^{st} digit 4 from dividend 49
\begin{array}{l}\phantom{26)}0\phantom{2}\\26\overline{)49}\\\end{array}
Since 4 is less than 26, use the next digit 9 from dividend 49 and add 0 to the quotient
\begin{array}{l}\phantom{26)}0\phantom{3}\\26\overline{)49}\\\end{array}
Use the 2^{nd} digit 9 from dividend 49
\begin{array}{l}\phantom{26)}01\phantom{4}\\26\overline{)49}\\\phantom{26)}\underline{\phantom{}26\phantom{}}\\\phantom{26)}23\\\end{array}
Find closest multiple of 26 to 49. We see that 1 \times 26 = 26 is the nearest. Now subtract 26 from 49 to get reminder 23. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }23
Since 23 is less than 26, stop the division. The reminder is 23. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}