Evaluate
\frac{484}{43}\approx 11.255813953
Factor
\frac{2 ^ {2} \cdot 11 ^ {2}}{43} = 11\frac{11}{43} = 11.255813953488373
Share
Copied to clipboard
\begin{array}{l}\phantom{43)}\phantom{1}\\43\overline{)484}\\\end{array}
Use the 1^{st} digit 4 from dividend 484
\begin{array}{l}\phantom{43)}0\phantom{2}\\43\overline{)484}\\\end{array}
Since 4 is less than 43, use the next digit 8 from dividend 484 and add 0 to the quotient
\begin{array}{l}\phantom{43)}0\phantom{3}\\43\overline{)484}\\\end{array}
Use the 2^{nd} digit 8 from dividend 484
\begin{array}{l}\phantom{43)}01\phantom{4}\\43\overline{)484}\\\phantom{43)}\underline{\phantom{}43\phantom{9}}\\\phantom{43)9}5\\\end{array}
Find closest multiple of 43 to 48. We see that 1 \times 43 = 43 is the nearest. Now subtract 43 from 48 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{43)}01\phantom{5}\\43\overline{)484}\\\phantom{43)}\underline{\phantom{}43\phantom{9}}\\\phantom{43)9}54\\\end{array}
Use the 3^{rd} digit 4 from dividend 484
\begin{array}{l}\phantom{43)}011\phantom{6}\\43\overline{)484}\\\phantom{43)}\underline{\phantom{}43\phantom{9}}\\\phantom{43)9}54\\\phantom{43)}\underline{\phantom{9}43\phantom{}}\\\phantom{43)9}11\\\end{array}
Find closest multiple of 43 to 54. We see that 1 \times 43 = 43 is the nearest. Now subtract 43 from 54 to get reminder 11. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }11
Since 11 is less than 43, stop the division. The reminder is 11. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}