Evaluate
\frac{12}{7}\approx 1.714285714
Factor
\frac{2 ^ {2} \cdot 3}{7} = 1\frac{5}{7} = 1.7142857142857142
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)48}\\\end{array}
Use the 1^{st} digit 4 from dividend 48
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)48}\\\end{array}
Since 4 is less than 28, use the next digit 8 from dividend 48 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)48}\\\end{array}
Use the 2^{nd} digit 8 from dividend 48
\begin{array}{l}\phantom{28)}01\phantom{4}\\28\overline{)48}\\\phantom{28)}\underline{\phantom{}28\phantom{}}\\\phantom{28)}20\\\end{array}
Find closest multiple of 28 to 48. We see that 1 \times 28 = 28 is the nearest. Now subtract 28 from 48 to get reminder 20. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }20
Since 20 is less than 28, stop the division. The reminder is 20. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}