Solve for x
x=-\frac{428\sqrt{291}}{4561425}\approx -0.001600625
Graph
Share
Copied to clipboard
\frac{47}{475}-33\sqrt{291}x=1
Multiply -1 and 33 to get -33.
-33\sqrt{291}x=1-\frac{47}{475}
Subtract \frac{47}{475} from both sides.
-33\sqrt{291}x=\frac{475}{475}-\frac{47}{475}
Convert 1 to fraction \frac{475}{475}.
-33\sqrt{291}x=\frac{475-47}{475}
Since \frac{475}{475} and \frac{47}{475} have the same denominator, subtract them by subtracting their numerators.
-33\sqrt{291}x=\frac{428}{475}
Subtract 47 from 475 to get 428.
\left(-33\sqrt{291}\right)x=\frac{428}{475}
The equation is in standard form.
\frac{\left(-33\sqrt{291}\right)x}{-33\sqrt{291}}=\frac{\frac{428}{475}}{-33\sqrt{291}}
Divide both sides by -33\sqrt{291}.
x=\frac{\frac{428}{475}}{-33\sqrt{291}}
Dividing by -33\sqrt{291} undoes the multiplication by -33\sqrt{291}.
x=-\frac{428\sqrt{291}}{4561425}
Divide \frac{428}{475} by -33\sqrt{291}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}