Evaluate
\frac{467}{18}\approx 25.944444444
Factor
\frac{467}{2 \cdot 3 ^ {2}} = 25\frac{17}{18} = 25.944444444444443
Share
Copied to clipboard
\begin{array}{l}\phantom{18)}\phantom{1}\\18\overline{)467}\\\end{array}
Use the 1^{st} digit 4 from dividend 467
\begin{array}{l}\phantom{18)}0\phantom{2}\\18\overline{)467}\\\end{array}
Since 4 is less than 18, use the next digit 6 from dividend 467 and add 0 to the quotient
\begin{array}{l}\phantom{18)}0\phantom{3}\\18\overline{)467}\\\end{array}
Use the 2^{nd} digit 6 from dividend 467
\begin{array}{l}\phantom{18)}02\phantom{4}\\18\overline{)467}\\\phantom{18)}\underline{\phantom{}36\phantom{9}}\\\phantom{18)}10\\\end{array}
Find closest multiple of 18 to 46. We see that 2 \times 18 = 36 is the nearest. Now subtract 36 from 46 to get reminder 10. Add 2 to quotient.
\begin{array}{l}\phantom{18)}02\phantom{5}\\18\overline{)467}\\\phantom{18)}\underline{\phantom{}36\phantom{9}}\\\phantom{18)}107\\\end{array}
Use the 3^{rd} digit 7 from dividend 467
\begin{array}{l}\phantom{18)}025\phantom{6}\\18\overline{)467}\\\phantom{18)}\underline{\phantom{}36\phantom{9}}\\\phantom{18)}107\\\phantom{18)}\underline{\phantom{9}90\phantom{}}\\\phantom{18)9}17\\\end{array}
Find closest multiple of 18 to 107. We see that 5 \times 18 = 90 is the nearest. Now subtract 90 from 107 to get reminder 17. Add 5 to quotient.
\text{Quotient: }25 \text{Reminder: }17
Since 17 is less than 18, stop the division. The reminder is 17. The topmost line 025 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}