Evaluate
\frac{22948}{11}\approx 2086.181818182
Factor
\frac{2 ^ {2} \cdot 5737}{11} = 2086\frac{2}{11} = 2086.181818181818
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)45896}\\\end{array}
Use the 1^{st} digit 4 from dividend 45896
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)45896}\\\end{array}
Since 4 is less than 22, use the next digit 5 from dividend 45896 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)45896}\\\end{array}
Use the 2^{nd} digit 5 from dividend 45896
\begin{array}{l}\phantom{22)}02\phantom{4}\\22\overline{)45896}\\\phantom{22)}\underline{\phantom{}44\phantom{999}}\\\phantom{22)9}1\\\end{array}
Find closest multiple of 22 to 45. We see that 2 \times 22 = 44 is the nearest. Now subtract 44 from 45 to get reminder 1. Add 2 to quotient.
\begin{array}{l}\phantom{22)}02\phantom{5}\\22\overline{)45896}\\\phantom{22)}\underline{\phantom{}44\phantom{999}}\\\phantom{22)9}18\\\end{array}
Use the 3^{rd} digit 8 from dividend 45896
\begin{array}{l}\phantom{22)}020\phantom{6}\\22\overline{)45896}\\\phantom{22)}\underline{\phantom{}44\phantom{999}}\\\phantom{22)9}18\\\end{array}
Since 18 is less than 22, use the next digit 9 from dividend 45896 and add 0 to the quotient
\begin{array}{l}\phantom{22)}020\phantom{7}\\22\overline{)45896}\\\phantom{22)}\underline{\phantom{}44\phantom{999}}\\\phantom{22)9}189\\\end{array}
Use the 4^{th} digit 9 from dividend 45896
\begin{array}{l}\phantom{22)}0208\phantom{8}\\22\overline{)45896}\\\phantom{22)}\underline{\phantom{}44\phantom{999}}\\\phantom{22)9}189\\\phantom{22)}\underline{\phantom{9}176\phantom{9}}\\\phantom{22)99}13\\\end{array}
Find closest multiple of 22 to 189. We see that 8 \times 22 = 176 is the nearest. Now subtract 176 from 189 to get reminder 13. Add 8 to quotient.
\begin{array}{l}\phantom{22)}0208\phantom{9}\\22\overline{)45896}\\\phantom{22)}\underline{\phantom{}44\phantom{999}}\\\phantom{22)9}189\\\phantom{22)}\underline{\phantom{9}176\phantom{9}}\\\phantom{22)99}136\\\end{array}
Use the 5^{th} digit 6 from dividend 45896
\begin{array}{l}\phantom{22)}02086\phantom{10}\\22\overline{)45896}\\\phantom{22)}\underline{\phantom{}44\phantom{999}}\\\phantom{22)9}189\\\phantom{22)}\underline{\phantom{9}176\phantom{9}}\\\phantom{22)99}136\\\phantom{22)}\underline{\phantom{99}132\phantom{}}\\\phantom{22)9999}4\\\end{array}
Find closest multiple of 22 to 136. We see that 6 \times 22 = 132 is the nearest. Now subtract 132 from 136 to get reminder 4. Add 6 to quotient.
\text{Quotient: }2086 \text{Reminder: }4
Since 4 is less than 22, stop the division. The reminder is 4. The topmost line 02086 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2086.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}