Evaluate
\frac{458}{55}\approx 8.327272727
Factor
\frac{2 \cdot 229}{5 \cdot 11} = 8\frac{18}{55} = 8.327272727272728
Share
Copied to clipboard
\begin{array}{l}\phantom{55)}\phantom{1}\\55\overline{)458}\\\end{array}
Use the 1^{st} digit 4 from dividend 458
\begin{array}{l}\phantom{55)}0\phantom{2}\\55\overline{)458}\\\end{array}
Since 4 is less than 55, use the next digit 5 from dividend 458 and add 0 to the quotient
\begin{array}{l}\phantom{55)}0\phantom{3}\\55\overline{)458}\\\end{array}
Use the 2^{nd} digit 5 from dividend 458
\begin{array}{l}\phantom{55)}00\phantom{4}\\55\overline{)458}\\\end{array}
Since 45 is less than 55, use the next digit 8 from dividend 458 and add 0 to the quotient
\begin{array}{l}\phantom{55)}00\phantom{5}\\55\overline{)458}\\\end{array}
Use the 3^{rd} digit 8 from dividend 458
\begin{array}{l}\phantom{55)}008\phantom{6}\\55\overline{)458}\\\phantom{55)}\underline{\phantom{}440\phantom{}}\\\phantom{55)9}18\\\end{array}
Find closest multiple of 55 to 458. We see that 8 \times 55 = 440 is the nearest. Now subtract 440 from 458 to get reminder 18. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }18
Since 18 is less than 55, stop the division. The reminder is 18. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}