Evaluate
\frac{454}{79}\approx 5.746835443
Factor
\frac{2 \cdot 227}{79} = 5\frac{59}{79} = 5.746835443037975
Share
Copied to clipboard
\begin{array}{l}\phantom{79)}\phantom{1}\\79\overline{)454}\\\end{array}
Use the 1^{st} digit 4 from dividend 454
\begin{array}{l}\phantom{79)}0\phantom{2}\\79\overline{)454}\\\end{array}
Since 4 is less than 79, use the next digit 5 from dividend 454 and add 0 to the quotient
\begin{array}{l}\phantom{79)}0\phantom{3}\\79\overline{)454}\\\end{array}
Use the 2^{nd} digit 5 from dividend 454
\begin{array}{l}\phantom{79)}00\phantom{4}\\79\overline{)454}\\\end{array}
Since 45 is less than 79, use the next digit 4 from dividend 454 and add 0 to the quotient
\begin{array}{l}\phantom{79)}00\phantom{5}\\79\overline{)454}\\\end{array}
Use the 3^{rd} digit 4 from dividend 454
\begin{array}{l}\phantom{79)}005\phantom{6}\\79\overline{)454}\\\phantom{79)}\underline{\phantom{}395\phantom{}}\\\phantom{79)9}59\\\end{array}
Find closest multiple of 79 to 454. We see that 5 \times 79 = 395 is the nearest. Now subtract 395 from 454 to get reminder 59. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }59
Since 59 is less than 79, stop the division. The reminder is 59. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}