Evaluate
\frac{452625}{22}\approx 20573.863636364
Factor
\frac{3 \cdot 5 ^ {3} \cdot 17 \cdot 71}{2 \cdot 11} = 20573\frac{19}{22} = 20573.863636363636
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)452625}\\\end{array}
Use the 1^{st} digit 4 from dividend 452625
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)452625}\\\end{array}
Since 4 is less than 22, use the next digit 5 from dividend 452625 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)452625}\\\end{array}
Use the 2^{nd} digit 5 from dividend 452625
\begin{array}{l}\phantom{22)}02\phantom{4}\\22\overline{)452625}\\\phantom{22)}\underline{\phantom{}44\phantom{9999}}\\\phantom{22)9}1\\\end{array}
Find closest multiple of 22 to 45. We see that 2 \times 22 = 44 is the nearest. Now subtract 44 from 45 to get reminder 1. Add 2 to quotient.
\begin{array}{l}\phantom{22)}02\phantom{5}\\22\overline{)452625}\\\phantom{22)}\underline{\phantom{}44\phantom{9999}}\\\phantom{22)9}12\\\end{array}
Use the 3^{rd} digit 2 from dividend 452625
\begin{array}{l}\phantom{22)}020\phantom{6}\\22\overline{)452625}\\\phantom{22)}\underline{\phantom{}44\phantom{9999}}\\\phantom{22)9}12\\\end{array}
Since 12 is less than 22, use the next digit 6 from dividend 452625 and add 0 to the quotient
\begin{array}{l}\phantom{22)}020\phantom{7}\\22\overline{)452625}\\\phantom{22)}\underline{\phantom{}44\phantom{9999}}\\\phantom{22)9}126\\\end{array}
Use the 4^{th} digit 6 from dividend 452625
\begin{array}{l}\phantom{22)}0205\phantom{8}\\22\overline{)452625}\\\phantom{22)}\underline{\phantom{}44\phantom{9999}}\\\phantom{22)9}126\\\phantom{22)}\underline{\phantom{9}110\phantom{99}}\\\phantom{22)99}16\\\end{array}
Find closest multiple of 22 to 126. We see that 5 \times 22 = 110 is the nearest. Now subtract 110 from 126 to get reminder 16. Add 5 to quotient.
\begin{array}{l}\phantom{22)}0205\phantom{9}\\22\overline{)452625}\\\phantom{22)}\underline{\phantom{}44\phantom{9999}}\\\phantom{22)9}126\\\phantom{22)}\underline{\phantom{9}110\phantom{99}}\\\phantom{22)99}162\\\end{array}
Use the 5^{th} digit 2 from dividend 452625
\begin{array}{l}\phantom{22)}02057\phantom{10}\\22\overline{)452625}\\\phantom{22)}\underline{\phantom{}44\phantom{9999}}\\\phantom{22)9}126\\\phantom{22)}\underline{\phantom{9}110\phantom{99}}\\\phantom{22)99}162\\\phantom{22)}\underline{\phantom{99}154\phantom{9}}\\\phantom{22)9999}8\\\end{array}
Find closest multiple of 22 to 162. We see that 7 \times 22 = 154 is the nearest. Now subtract 154 from 162 to get reminder 8. Add 7 to quotient.
\begin{array}{l}\phantom{22)}02057\phantom{11}\\22\overline{)452625}\\\phantom{22)}\underline{\phantom{}44\phantom{9999}}\\\phantom{22)9}126\\\phantom{22)}\underline{\phantom{9}110\phantom{99}}\\\phantom{22)99}162\\\phantom{22)}\underline{\phantom{99}154\phantom{9}}\\\phantom{22)9999}85\\\end{array}
Use the 6^{th} digit 5 from dividend 452625
\begin{array}{l}\phantom{22)}020573\phantom{12}\\22\overline{)452625}\\\phantom{22)}\underline{\phantom{}44\phantom{9999}}\\\phantom{22)9}126\\\phantom{22)}\underline{\phantom{9}110\phantom{99}}\\\phantom{22)99}162\\\phantom{22)}\underline{\phantom{99}154\phantom{9}}\\\phantom{22)9999}85\\\phantom{22)}\underline{\phantom{9999}66\phantom{}}\\\phantom{22)9999}19\\\end{array}
Find closest multiple of 22 to 85. We see that 3 \times 22 = 66 is the nearest. Now subtract 66 from 85 to get reminder 19. Add 3 to quotient.
\text{Quotient: }20573 \text{Reminder: }19
Since 19 is less than 22, stop the division. The reminder is 19. The topmost line 020573 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 20573.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}