Evaluate
6x+\frac{15000}{x}
Factor
\frac{6\left(x^{2}+2500\right)}{x}
Graph
Share
Copied to clipboard
\frac{45000}{3x}+\frac{6x\times 3x}{3x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6x times \frac{3x}{3x}.
\frac{45000+6x\times 3x}{3x}
Since \frac{45000}{3x} and \frac{6x\times 3x}{3x} have the same denominator, add them by adding their numerators.
\frac{45000+18x^{2}}{3x}
Do the multiplications in 45000+6x\times 3x.
\frac{18\left(x^{2}+2500\right)}{3x}
Factor the expressions that are not already factored in \frac{45000+18x^{2}}{3x}.
\frac{6\left(x^{2}+2500\right)}{x}
Cancel out 3 in both numerator and denominator.
\frac{6x^{2}+15000}{x}
Use the distributive property to multiply 6 by x^{2}+2500.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}