Solve for x (complex solution)
x=-15+i\times 15\sqrt{39}\approx -15+93.674969976i
x=-i\times 15\sqrt{39}-15\approx -15-93.674969976i
Graph
Share
Copied to clipboard
\left(x+10\right)\times 450+x\left(x+10\right)\times 0.5=x\times 440
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+10\right), the least common multiple of x,x+10.
450x+4500+x\left(x+10\right)\times 0.5=x\times 440
Use the distributive property to multiply x+10 by 450.
450x+4500+\left(x^{2}+10x\right)\times 0.5=x\times 440
Use the distributive property to multiply x by x+10.
450x+4500+0.5x^{2}+5x=x\times 440
Use the distributive property to multiply x^{2}+10x by 0.5.
455x+4500+0.5x^{2}=x\times 440
Combine 450x and 5x to get 455x.
455x+4500+0.5x^{2}-x\times 440=0
Subtract x\times 440 from both sides.
15x+4500+0.5x^{2}=0
Combine 455x and -x\times 440 to get 15x.
0.5x^{2}+15x+4500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\times 0.5\times 4500}}{2\times 0.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.5 for a, 15 for b, and 4500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 0.5\times 4500}}{2\times 0.5}
Square 15.
x=\frac{-15±\sqrt{225-2\times 4500}}{2\times 0.5}
Multiply -4 times 0.5.
x=\frac{-15±\sqrt{225-9000}}{2\times 0.5}
Multiply -2 times 4500.
x=\frac{-15±\sqrt{-8775}}{2\times 0.5}
Add 225 to -9000.
x=\frac{-15±15\sqrt{39}i}{2\times 0.5}
Take the square root of -8775.
x=\frac{-15±15\sqrt{39}i}{1}
Multiply 2 times 0.5.
x=\frac{-15+15\sqrt{39}i}{1}
Now solve the equation x=\frac{-15±15\sqrt{39}i}{1} when ± is plus. Add -15 to 15i\sqrt{39}.
x=-15+15\sqrt{39}i
Divide -15+15i\sqrt{39} by 1.
x=\frac{-15\sqrt{39}i-15}{1}
Now solve the equation x=\frac{-15±15\sqrt{39}i}{1} when ± is minus. Subtract 15i\sqrt{39} from -15.
x=-15\sqrt{39}i-15
Divide -15-15i\sqrt{39} by 1.
x=-15+15\sqrt{39}i x=-15\sqrt{39}i-15
The equation is now solved.
\left(x+10\right)\times 450+x\left(x+10\right)\times 0.5=x\times 440
Variable x cannot be equal to any of the values -10,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+10\right), the least common multiple of x,x+10.
450x+4500+x\left(x+10\right)\times 0.5=x\times 440
Use the distributive property to multiply x+10 by 450.
450x+4500+\left(x^{2}+10x\right)\times 0.5=x\times 440
Use the distributive property to multiply x by x+10.
450x+4500+0.5x^{2}+5x=x\times 440
Use the distributive property to multiply x^{2}+10x by 0.5.
455x+4500+0.5x^{2}=x\times 440
Combine 450x and 5x to get 455x.
455x+4500+0.5x^{2}-x\times 440=0
Subtract x\times 440 from both sides.
15x+4500+0.5x^{2}=0
Combine 455x and -x\times 440 to get 15x.
15x+0.5x^{2}=-4500
Subtract 4500 from both sides. Anything subtracted from zero gives its negation.
0.5x^{2}+15x=-4500
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.5x^{2}+15x}{0.5}=-\frac{4500}{0.5}
Multiply both sides by 2.
x^{2}+\frac{15}{0.5}x=-\frac{4500}{0.5}
Dividing by 0.5 undoes the multiplication by 0.5.
x^{2}+30x=-\frac{4500}{0.5}
Divide 15 by 0.5 by multiplying 15 by the reciprocal of 0.5.
x^{2}+30x=-9000
Divide -4500 by 0.5 by multiplying -4500 by the reciprocal of 0.5.
x^{2}+30x+15^{2}=-9000+15^{2}
Divide 30, the coefficient of the x term, by 2 to get 15. Then add the square of 15 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+30x+225=-9000+225
Square 15.
x^{2}+30x+225=-8775
Add -9000 to 225.
\left(x+15\right)^{2}=-8775
Factor x^{2}+30x+225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+15\right)^{2}}=\sqrt{-8775}
Take the square root of both sides of the equation.
x+15=15\sqrt{39}i x+15=-15\sqrt{39}i
Simplify.
x=-15+15\sqrt{39}i x=-15\sqrt{39}i-15
Subtract 15 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}