Evaluate
\frac{45}{23}\approx 1.956521739
Factor
\frac{3 ^ {2} \cdot 5}{23} = 1\frac{22}{23} = 1.9565217391304348
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)45}\\\end{array}
Use the 1^{st} digit 4 from dividend 45
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)45}\\\end{array}
Since 4 is less than 23, use the next digit 5 from dividend 45 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)45}\\\end{array}
Use the 2^{nd} digit 5 from dividend 45
\begin{array}{l}\phantom{23)}01\phantom{4}\\23\overline{)45}\\\phantom{23)}\underline{\phantom{}23\phantom{}}\\\phantom{23)}22\\\end{array}
Find closest multiple of 23 to 45. We see that 1 \times 23 = 23 is the nearest. Now subtract 23 from 45 to get reminder 22. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }22
Since 22 is less than 23, stop the division. The reminder is 22. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}