\frac{ 45 }{ 12 \times 7 \% -2 }
Evaluate
-\frac{1125}{29}\approx -38.793103448
Factor
-\frac{1125}{29} = -38\frac{23}{29} = -38.793103448275865
Share
Copied to clipboard
\frac{45}{\frac{12\times 7}{100}-2}
Express 12\times \frac{7}{100} as a single fraction.
\frac{45}{\frac{84}{100}-2}
Multiply 12 and 7 to get 84.
\frac{45}{\frac{21}{25}-2}
Reduce the fraction \frac{84}{100} to lowest terms by extracting and canceling out 4.
\frac{45}{\frac{21}{25}-\frac{50}{25}}
Convert 2 to fraction \frac{50}{25}.
\frac{45}{\frac{21-50}{25}}
Since \frac{21}{25} and \frac{50}{25} have the same denominator, subtract them by subtracting their numerators.
\frac{45}{-\frac{29}{25}}
Subtract 50 from 21 to get -29.
45\left(-\frac{25}{29}\right)
Divide 45 by -\frac{29}{25} by multiplying 45 by the reciprocal of -\frac{29}{25}.
\frac{45\left(-25\right)}{29}
Express 45\left(-\frac{25}{29}\right) as a single fraction.
\frac{-1125}{29}
Multiply 45 and -25 to get -1125.
-\frac{1125}{29}
Fraction \frac{-1125}{29} can be rewritten as -\frac{1125}{29} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}