Evaluate
\frac{440}{97}\approx 4.536082474
Factor
\frac{2 ^ {3} \cdot 5 \cdot 11}{97} = 4\frac{52}{97} = 4.536082474226804
Share
Copied to clipboard
\begin{array}{l}\phantom{97)}\phantom{1}\\97\overline{)440}\\\end{array}
Use the 1^{st} digit 4 from dividend 440
\begin{array}{l}\phantom{97)}0\phantom{2}\\97\overline{)440}\\\end{array}
Since 4 is less than 97, use the next digit 4 from dividend 440 and add 0 to the quotient
\begin{array}{l}\phantom{97)}0\phantom{3}\\97\overline{)440}\\\end{array}
Use the 2^{nd} digit 4 from dividend 440
\begin{array}{l}\phantom{97)}00\phantom{4}\\97\overline{)440}\\\end{array}
Since 44 is less than 97, use the next digit 0 from dividend 440 and add 0 to the quotient
\begin{array}{l}\phantom{97)}00\phantom{5}\\97\overline{)440}\\\end{array}
Use the 3^{rd} digit 0 from dividend 440
\begin{array}{l}\phantom{97)}004\phantom{6}\\97\overline{)440}\\\phantom{97)}\underline{\phantom{}388\phantom{}}\\\phantom{97)9}52\\\end{array}
Find closest multiple of 97 to 440. We see that 4 \times 97 = 388 is the nearest. Now subtract 388 from 440 to get reminder 52. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }52
Since 52 is less than 97, stop the division. The reminder is 52. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}