Evaluate
\frac{820\sqrt{3026}}{10591}\approx 4.259036345
Share
Copied to clipboard
\frac{16.4}{\sqrt{\frac{8.68^{2}}{10}+\frac{8.54^{2}}{10}}}
Subtract 28.1 from 44.5 to get 16.4.
\frac{16.4}{\sqrt{\frac{75.3424}{10}+\frac{8.54^{2}}{10}}}
Calculate 8.68 to the power of 2 and get 75.3424.
\frac{16.4}{\sqrt{\frac{753424}{100000}+\frac{8.54^{2}}{10}}}
Expand \frac{75.3424}{10} by multiplying both numerator and the denominator by 10000.
\frac{16.4}{\sqrt{\frac{47089}{6250}+\frac{8.54^{2}}{10}}}
Reduce the fraction \frac{753424}{100000} to lowest terms by extracting and canceling out 16.
\frac{16.4}{\sqrt{\frac{47089}{6250}+\frac{72.9316}{10}}}
Calculate 8.54 to the power of 2 and get 72.9316.
\frac{16.4}{\sqrt{\frac{47089}{6250}+\frac{729316}{100000}}}
Expand \frac{72.9316}{10} by multiplying both numerator and the denominator by 10000.
\frac{16.4}{\sqrt{\frac{47089}{6250}+\frac{182329}{25000}}}
Reduce the fraction \frac{729316}{100000} to lowest terms by extracting and canceling out 4.
\frac{16.4}{\sqrt{\frac{188356}{25000}+\frac{182329}{25000}}}
Least common multiple of 6250 and 25000 is 25000. Convert \frac{47089}{6250} and \frac{182329}{25000} to fractions with denominator 25000.
\frac{16.4}{\sqrt{\frac{188356+182329}{25000}}}
Since \frac{188356}{25000} and \frac{182329}{25000} have the same denominator, add them by adding their numerators.
\frac{16.4}{\sqrt{\frac{370685}{25000}}}
Add 188356 and 182329 to get 370685.
\frac{16.4}{\sqrt{\frac{74137}{5000}}}
Reduce the fraction \frac{370685}{25000} to lowest terms by extracting and canceling out 5.
\frac{16.4}{\frac{\sqrt{74137}}{\sqrt{5000}}}
Rewrite the square root of the division \sqrt{\frac{74137}{5000}} as the division of square roots \frac{\sqrt{74137}}{\sqrt{5000}}.
\frac{16.4}{\frac{7\sqrt{1513}}{\sqrt{5000}}}
Factor 74137=7^{2}\times 1513. Rewrite the square root of the product \sqrt{7^{2}\times 1513} as the product of square roots \sqrt{7^{2}}\sqrt{1513}. Take the square root of 7^{2}.
\frac{16.4}{\frac{7\sqrt{1513}}{50\sqrt{2}}}
Factor 5000=50^{2}\times 2. Rewrite the square root of the product \sqrt{50^{2}\times 2} as the product of square roots \sqrt{50^{2}}\sqrt{2}. Take the square root of 50^{2}.
\frac{16.4}{\frac{7\sqrt{1513}\sqrt{2}}{50\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{7\sqrt{1513}}{50\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{16.4}{\frac{7\sqrt{1513}\sqrt{2}}{50\times 2}}
The square of \sqrt{2} is 2.
\frac{16.4}{\frac{7\sqrt{3026}}{50\times 2}}
To multiply \sqrt{1513} and \sqrt{2}, multiply the numbers under the square root.
\frac{16.4}{\frac{7\sqrt{3026}}{100}}
Multiply 50 and 2 to get 100.
\frac{16.4\times 100}{7\sqrt{3026}}
Divide 16.4 by \frac{7\sqrt{3026}}{100} by multiplying 16.4 by the reciprocal of \frac{7\sqrt{3026}}{100}.
\frac{16.4\times 100\sqrt{3026}}{7\left(\sqrt{3026}\right)^{2}}
Rationalize the denominator of \frac{16.4\times 100}{7\sqrt{3026}} by multiplying numerator and denominator by \sqrt{3026}.
\frac{16.4\times 100\sqrt{3026}}{7\times 3026}
The square of \sqrt{3026} is 3026.
\frac{1640\sqrt{3026}}{7\times 3026}
Multiply 16.4 and 100 to get 1640.
\frac{1640\sqrt{3026}}{21182}
Multiply 7 and 3026 to get 21182.
\frac{820}{10591}\sqrt{3026}
Divide 1640\sqrt{3026} by 21182 to get \frac{820}{10591}\sqrt{3026}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}