Evaluate
\frac{218}{61}\approx 3.573770492
Factor
\frac{2 \cdot 109}{61} = 3\frac{35}{61} = 3.5737704918032787
Share
Copied to clipboard
\begin{array}{l}\phantom{122)}\phantom{1}\\122\overline{)436}\\\end{array}
Use the 1^{st} digit 4 from dividend 436
\begin{array}{l}\phantom{122)}0\phantom{2}\\122\overline{)436}\\\end{array}
Since 4 is less than 122, use the next digit 3 from dividend 436 and add 0 to the quotient
\begin{array}{l}\phantom{122)}0\phantom{3}\\122\overline{)436}\\\end{array}
Use the 2^{nd} digit 3 from dividend 436
\begin{array}{l}\phantom{122)}00\phantom{4}\\122\overline{)436}\\\end{array}
Since 43 is less than 122, use the next digit 6 from dividend 436 and add 0 to the quotient
\begin{array}{l}\phantom{122)}00\phantom{5}\\122\overline{)436}\\\end{array}
Use the 3^{rd} digit 6 from dividend 436
\begin{array}{l}\phantom{122)}003\phantom{6}\\122\overline{)436}\\\phantom{122)}\underline{\phantom{}366\phantom{}}\\\phantom{122)9}70\\\end{array}
Find closest multiple of 122 to 436. We see that 3 \times 122 = 366 is the nearest. Now subtract 366 from 436 to get reminder 70. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }70
Since 70 is less than 122, stop the division. The reminder is 70. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}