Evaluate
\frac{87}{16}=5.4375
Factor
\frac{3 \cdot 29}{2 ^ {4}} = 5\frac{7}{16} = 5.4375
Share
Copied to clipboard
\begin{array}{l}\phantom{80)}\phantom{1}\\80\overline{)435}\\\end{array}
Use the 1^{st} digit 4 from dividend 435
\begin{array}{l}\phantom{80)}0\phantom{2}\\80\overline{)435}\\\end{array}
Since 4 is less than 80, use the next digit 3 from dividend 435 and add 0 to the quotient
\begin{array}{l}\phantom{80)}0\phantom{3}\\80\overline{)435}\\\end{array}
Use the 2^{nd} digit 3 from dividend 435
\begin{array}{l}\phantom{80)}00\phantom{4}\\80\overline{)435}\\\end{array}
Since 43 is less than 80, use the next digit 5 from dividend 435 and add 0 to the quotient
\begin{array}{l}\phantom{80)}00\phantom{5}\\80\overline{)435}\\\end{array}
Use the 3^{rd} digit 5 from dividend 435
\begin{array}{l}\phantom{80)}005\phantom{6}\\80\overline{)435}\\\phantom{80)}\underline{\phantom{}400\phantom{}}\\\phantom{80)9}35\\\end{array}
Find closest multiple of 80 to 435. We see that 5 \times 80 = 400 is the nearest. Now subtract 400 from 435 to get reminder 35. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }35
Since 35 is less than 80, stop the division. The reminder is 35. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}