Evaluate
\frac{4167}{665}\approx 6.266165414
Factor
\frac{3 ^ {2} \cdot 463}{5 \cdot 7 \cdot 19} = 6\frac{177}{665} = 6.266165413533835
Share
Copied to clipboard
\begin{array}{l}\phantom{665)}\phantom{1}\\665\overline{)4167}\\\end{array}
Use the 1^{st} digit 4 from dividend 4167
\begin{array}{l}\phantom{665)}0\phantom{2}\\665\overline{)4167}\\\end{array}
Since 4 is less than 665, use the next digit 1 from dividend 4167 and add 0 to the quotient
\begin{array}{l}\phantom{665)}0\phantom{3}\\665\overline{)4167}\\\end{array}
Use the 2^{nd} digit 1 from dividend 4167
\begin{array}{l}\phantom{665)}00\phantom{4}\\665\overline{)4167}\\\end{array}
Since 41 is less than 665, use the next digit 6 from dividend 4167 and add 0 to the quotient
\begin{array}{l}\phantom{665)}00\phantom{5}\\665\overline{)4167}\\\end{array}
Use the 3^{rd} digit 6 from dividend 4167
\begin{array}{l}\phantom{665)}000\phantom{6}\\665\overline{)4167}\\\end{array}
Since 416 is less than 665, use the next digit 7 from dividend 4167 and add 0 to the quotient
\begin{array}{l}\phantom{665)}000\phantom{7}\\665\overline{)4167}\\\end{array}
Use the 4^{th} digit 7 from dividend 4167
\begin{array}{l}\phantom{665)}0006\phantom{8}\\665\overline{)4167}\\\phantom{665)}\underline{\phantom{}3990\phantom{}}\\\phantom{665)9}177\\\end{array}
Find closest multiple of 665 to 4167. We see that 6 \times 665 = 3990 is the nearest. Now subtract 3990 from 4167 to get reminder 177. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }177
Since 177 is less than 665, stop the division. The reminder is 177. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}