Evaluate
\frac{201}{11}\approx 18.272727273
Factor
\frac{3 \cdot 67}{11} = 18\frac{3}{11} = 18.272727272727273
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)402}\\\end{array}
Use the 1^{st} digit 4 from dividend 402
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)402}\\\end{array}
Since 4 is less than 22, use the next digit 0 from dividend 402 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)402}\\\end{array}
Use the 2^{nd} digit 0 from dividend 402
\begin{array}{l}\phantom{22)}01\phantom{4}\\22\overline{)402}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}18\\\end{array}
Find closest multiple of 22 to 40. We see that 1 \times 22 = 22 is the nearest. Now subtract 22 from 40 to get reminder 18. Add 1 to quotient.
\begin{array}{l}\phantom{22)}01\phantom{5}\\22\overline{)402}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}182\\\end{array}
Use the 3^{rd} digit 2 from dividend 402
\begin{array}{l}\phantom{22)}018\phantom{6}\\22\overline{)402}\\\phantom{22)}\underline{\phantom{}22\phantom{9}}\\\phantom{22)}182\\\phantom{22)}\underline{\phantom{}176\phantom{}}\\\phantom{22)99}6\\\end{array}
Find closest multiple of 22 to 182. We see that 8 \times 22 = 176 is the nearest. Now subtract 176 from 182 to get reminder 6. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }6
Since 6 is less than 22, stop the division. The reminder is 6. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}