Evaluate
\frac{80}{7}\approx 11.428571429
Factor
\frac{2 ^ {4} \cdot 5}{7} = 11\frac{3}{7} = 11.428571428571429
Share
Copied to clipboard
\begin{array}{l}\phantom{35)}\phantom{1}\\35\overline{)400}\\\end{array}
Use the 1^{st} digit 4 from dividend 400
\begin{array}{l}\phantom{35)}0\phantom{2}\\35\overline{)400}\\\end{array}
Since 4 is less than 35, use the next digit 0 from dividend 400 and add 0 to the quotient
\begin{array}{l}\phantom{35)}0\phantom{3}\\35\overline{)400}\\\end{array}
Use the 2^{nd} digit 0 from dividend 400
\begin{array}{l}\phantom{35)}01\phantom{4}\\35\overline{)400}\\\phantom{35)}\underline{\phantom{}35\phantom{9}}\\\phantom{35)9}5\\\end{array}
Find closest multiple of 35 to 40. We see that 1 \times 35 = 35 is the nearest. Now subtract 35 from 40 to get reminder 5. Add 1 to quotient.
\begin{array}{l}\phantom{35)}01\phantom{5}\\35\overline{)400}\\\phantom{35)}\underline{\phantom{}35\phantom{9}}\\\phantom{35)9}50\\\end{array}
Use the 3^{rd} digit 0 from dividend 400
\begin{array}{l}\phantom{35)}011\phantom{6}\\35\overline{)400}\\\phantom{35)}\underline{\phantom{}35\phantom{9}}\\\phantom{35)9}50\\\phantom{35)}\underline{\phantom{9}35\phantom{}}\\\phantom{35)9}15\\\end{array}
Find closest multiple of 35 to 50. We see that 1 \times 35 = 35 is the nearest. Now subtract 35 from 50 to get reminder 15. Add 1 to quotient.
\text{Quotient: }11 \text{Reminder: }15
Since 15 is less than 35, stop the division. The reminder is 15. The topmost line 011 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}