Evaluate
\frac{400}{17}\approx 23.529411765
Factor
\frac{2 ^ {4} \cdot 5 ^ {2}}{17} = 23\frac{9}{17} = 23.529411764705884
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)400}\\\end{array}
Use the 1^{st} digit 4 from dividend 400
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)400}\\\end{array}
Since 4 is less than 17, use the next digit 0 from dividend 400 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)400}\\\end{array}
Use the 2^{nd} digit 0 from dividend 400
\begin{array}{l}\phantom{17)}02\phantom{4}\\17\overline{)400}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)9}6\\\end{array}
Find closest multiple of 17 to 40. We see that 2 \times 17 = 34 is the nearest. Now subtract 34 from 40 to get reminder 6. Add 2 to quotient.
\begin{array}{l}\phantom{17)}02\phantom{5}\\17\overline{)400}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)9}60\\\end{array}
Use the 3^{rd} digit 0 from dividend 400
\begin{array}{l}\phantom{17)}023\phantom{6}\\17\overline{)400}\\\phantom{17)}\underline{\phantom{}34\phantom{9}}\\\phantom{17)9}60\\\phantom{17)}\underline{\phantom{9}51\phantom{}}\\\phantom{17)99}9\\\end{array}
Find closest multiple of 17 to 60. We see that 3 \times 17 = 51 is the nearest. Now subtract 51 from 60 to get reminder 9. Add 3 to quotient.
\text{Quotient: }23 \text{Reminder: }9
Since 9 is less than 17, stop the division. The reminder is 9. The topmost line 023 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}