Solve for x
x = \frac{204}{145} = 1\frac{59}{145} \approx 1.406896552
Graph
Share
Copied to clipboard
40+32+64=18x\times \frac{2.9}{0.54}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 18x.
72+64=18x\times \frac{2.9}{0.54}
Add 40 and 32 to get 72.
136=18x\times \frac{2.9}{0.54}
Add 72 and 64 to get 136.
136=18x\times \frac{290}{54}
Expand \frac{2.9}{0.54} by multiplying both numerator and the denominator by 100.
136=18x\times \frac{145}{27}
Reduce the fraction \frac{290}{54} to lowest terms by extracting and canceling out 2.
136=\frac{290}{3}x
Multiply 18 and \frac{145}{27} to get \frac{290}{3}.
\frac{290}{3}x=136
Swap sides so that all variable terms are on the left hand side.
x=136\times \frac{3}{290}
Multiply both sides by \frac{3}{290}, the reciprocal of \frac{290}{3}.
x=\frac{204}{145}
Multiply 136 and \frac{3}{290} to get \frac{204}{145}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}