Solve for y
y=9.6
Graph
Share
Copied to clipboard
4.8+y=y\times \frac{8.4}{5.6}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
4.8+y=y\times \frac{84}{56}
Expand \frac{8.4}{5.6} by multiplying both numerator and the denominator by 10.
4.8+y=y\times \frac{3}{2}
Reduce the fraction \frac{84}{56} to lowest terms by extracting and canceling out 28.
4.8+y-y\times \frac{3}{2}=0
Subtract y\times \frac{3}{2} from both sides.
4.8-\frac{1}{2}y=0
Combine y and -y\times \frac{3}{2} to get -\frac{1}{2}y.
-\frac{1}{2}y=-4.8
Subtract 4.8 from both sides. Anything subtracted from zero gives its negation.
y=-4.8\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
y=9.6
Multiply -4.8 and -2 to get 9.6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}