Skip to main content
Evaluate
Tick mark Image

Share

\frac{4.5\times 10^{-14}\times 2.56}{2\times 8.85\times 10^{-12}\sqrt{\left(2.56\times 10^{-2}\right)^{2}+\left(1.3\times 10^{-2}\right)^{2}}}
To multiply powers of the same base, add their exponents. Add -12 and -2 to get -14.
\frac{2.56\times 4.5}{2\times 8.85\times 10^{2}\sqrt{\left(1.3\times 10^{-2}\right)^{2}+\left(2.56\times 10^{-2}\right)^{2}}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{11.52}{2\times 8.85\times 10^{2}\sqrt{\left(1.3\times 10^{-2}\right)^{2}+\left(2.56\times 10^{-2}\right)^{2}}}
Multiply 2.56 and 4.5 to get 11.52.
\frac{11.52}{17.7\times 10^{2}\sqrt{\left(1.3\times 10^{-2}\right)^{2}+\left(2.56\times 10^{-2}\right)^{2}}}
Multiply 2 and 8.85 to get 17.7.
\frac{11.52}{17.7\times 100\sqrt{\left(1.3\times 10^{-2}\right)^{2}+\left(2.56\times 10^{-2}\right)^{2}}}
Calculate 10 to the power of 2 and get 100.
\frac{11.52}{1770\sqrt{\left(1.3\times 10^{-2}\right)^{2}+\left(2.56\times 10^{-2}\right)^{2}}}
Multiply 17.7 and 100 to get 1770.
\frac{11.52}{1770\sqrt{\left(1.3\times \frac{1}{100}\right)^{2}+\left(2.56\times 10^{-2}\right)^{2}}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{11.52}{1770\sqrt{\left(\frac{13}{1000}\right)^{2}+\left(2.56\times 10^{-2}\right)^{2}}}
Multiply 1.3 and \frac{1}{100} to get \frac{13}{1000}.
\frac{11.52}{1770\sqrt{\frac{169}{1000000}+\left(2.56\times 10^{-2}\right)^{2}}}
Calculate \frac{13}{1000} to the power of 2 and get \frac{169}{1000000}.
\frac{11.52}{1770\sqrt{\frac{169}{1000000}+\left(2.56\times \frac{1}{100}\right)^{2}}}
Calculate 10 to the power of -2 and get \frac{1}{100}.
\frac{11.52}{1770\sqrt{\frac{169}{1000000}+\left(\frac{16}{625}\right)^{2}}}
Multiply 2.56 and \frac{1}{100} to get \frac{16}{625}.
\frac{11.52}{1770\sqrt{\frac{169}{1000000}+\frac{256}{390625}}}
Calculate \frac{16}{625} to the power of 2 and get \frac{256}{390625}.
\frac{11.52}{1770\sqrt{\frac{20609}{25000000}}}
Add \frac{169}{1000000} and \frac{256}{390625} to get \frac{20609}{25000000}.
\frac{11.52}{1770\times \frac{\sqrt{20609}}{\sqrt{25000000}}}
Rewrite the square root of the division \sqrt{\frac{20609}{25000000}} as the division of square roots \frac{\sqrt{20609}}{\sqrt{25000000}}.
\frac{11.52}{1770\times \frac{\sqrt{20609}}{5000}}
Calculate the square root of 25000000 and get 5000.
\frac{11.52}{\frac{1770\sqrt{20609}}{5000}}
Express 1770\times \frac{\sqrt{20609}}{5000} as a single fraction.
\frac{11.52\times 5000}{1770\sqrt{20609}}
Divide 11.52 by \frac{1770\sqrt{20609}}{5000} by multiplying 11.52 by the reciprocal of \frac{1770\sqrt{20609}}{5000}.
\frac{11.52\times 500}{177\sqrt{20609}}
Cancel out 10 in both numerator and denominator.
\frac{11.52\times 500\sqrt{20609}}{177\left(\sqrt{20609}\right)^{2}}
Rationalize the denominator of \frac{11.52\times 500}{177\sqrt{20609}} by multiplying numerator and denominator by \sqrt{20609}.
\frac{11.52\times 500\sqrt{20609}}{177\times 20609}
The square of \sqrt{20609} is 20609.
\frac{5760\sqrt{20609}}{177\times 20609}
Multiply 11.52 and 500 to get 5760.
\frac{5760\sqrt{20609}}{3647793}
Multiply 177 and 20609 to get 3647793.
\frac{1920}{1215931}\sqrt{20609}
Divide 5760\sqrt{20609} by 3647793 to get \frac{1920}{1215931}\sqrt{20609}.