Solve for x
x=\frac{5\left(y+32\right)}{6}
y\neq 4\text{ and }y\neq 10
Solve for y
y=\frac{6x}{5}-32
x\neq 30\text{ and }x\neq 35
Graph
Share
Copied to clipboard
\left(35-x\right)\left(4-y\right)=\left(x-30\right)\left(y-10\right)
Variable x cannot be equal to any of the values 30,35 since division by zero is not defined. Multiply both sides of the equation by \left(x-35\right)\left(x-30\right), the least common multiple of 30-x,x-35.
140-35y-4x+yx=\left(x-30\right)\left(y-10\right)
Use the distributive property to multiply 35-x by 4-y.
140-35y-4x+yx=xy-10x-30y+300
Use the distributive property to multiply x-30 by y-10.
140-35y-4x+yx-xy=-10x-30y+300
Subtract xy from both sides.
140-35y-4x=-10x-30y+300
Combine yx and -xy to get 0.
140-35y-4x+10x=-30y+300
Add 10x to both sides.
140-35y+6x=-30y+300
Combine -4x and 10x to get 6x.
-35y+6x=-30y+300-140
Subtract 140 from both sides.
-35y+6x=-30y+160
Subtract 140 from 300 to get 160.
6x=-30y+160+35y
Add 35y to both sides.
6x=5y+160
Combine -30y and 35y to get 5y.
\frac{6x}{6}=\frac{5y+160}{6}
Divide both sides by 6.
x=\frac{5y+160}{6}
Dividing by 6 undoes the multiplication by 6.
x=\frac{5y}{6}+\frac{80}{3}
Divide 160+5y by 6.
x=\frac{5y}{6}+\frac{80}{3}\text{, }x\neq 30\text{ and }x\neq 35
Variable x cannot be equal to any of the values 30,35.
\left(35-x\right)\left(4-y\right)=\left(x-30\right)\left(y-10\right)
Multiply both sides of the equation by \left(x-35\right)\left(x-30\right), the least common multiple of 30-x,x-35.
140-35y-4x+yx=\left(x-30\right)\left(y-10\right)
Use the distributive property to multiply 35-x by 4-y.
140-35y-4x+yx=xy-10x-30y+300
Use the distributive property to multiply x-30 by y-10.
140-35y-4x+yx-xy=-10x-30y+300
Subtract xy from both sides.
140-35y-4x=-10x-30y+300
Combine yx and -xy to get 0.
140-35y-4x+30y=-10x+300
Add 30y to both sides.
140-5y-4x=-10x+300
Combine -35y and 30y to get -5y.
-5y-4x=-10x+300-140
Subtract 140 from both sides.
-5y-4x=-10x+160
Subtract 140 from 300 to get 160.
-5y=-10x+160+4x
Add 4x to both sides.
-5y=-6x+160
Combine -10x and 4x to get -6x.
-5y=160-6x
The equation is in standard form.
\frac{-5y}{-5}=\frac{160-6x}{-5}
Divide both sides by -5.
y=\frac{160-6x}{-5}
Dividing by -5 undoes the multiplication by -5.
y=\frac{6x}{5}-32
Divide -6x+160 by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}