Evaluate
\frac{2\left(\sqrt{6}-3\right)}{3}\approx -0.367006838
Factor
\frac{2 {(\sqrt{6} - 3)}}{3} = -0.3670068381445481
Quiz
Arithmetic
5 problems similar to:
\frac{ 4-6 \sqrt{ \frac{ 2 }{ 3 } } }{ 3 \sqrt{ \frac{ 2 }{ 3 } } }
Share
Copied to clipboard
\frac{4-6\times \frac{\sqrt{2}}{\sqrt{3}}}{3\sqrt{\frac{2}{3}}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{4-6\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{3\sqrt{\frac{2}{3}}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{4-6\times \frac{\sqrt{2}\sqrt{3}}{3}}{3\sqrt{\frac{2}{3}}}
The square of \sqrt{3} is 3.
\frac{4-6\times \frac{\sqrt{6}}{3}}{3\sqrt{\frac{2}{3}}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{4-2\sqrt{6}}{3\sqrt{\frac{2}{3}}}
Cancel out 3, the greatest common factor in 6 and 3.
\frac{4-2\sqrt{6}}{3\times \frac{\sqrt{2}}{\sqrt{3}}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{4-2\sqrt{6}}{3\times \frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{4-2\sqrt{6}}{3\times \frac{\sqrt{2}\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{4-2\sqrt{6}}{3\times \frac{\sqrt{6}}{3}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{4-2\sqrt{6}}{\sqrt{6}}
Cancel out 3 and 3.
\frac{\left(4-2\sqrt{6}\right)\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{4-2\sqrt{6}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\left(4-2\sqrt{6}\right)\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{4\sqrt{6}-2\left(\sqrt{6}\right)^{2}}{6}
Use the distributive property to multiply 4-2\sqrt{6} by \sqrt{6}.
\frac{4\sqrt{6}-2\times 6}{6}
The square of \sqrt{6} is 6.
\frac{4\sqrt{6}-12}{6}
Multiply -2 and 6 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}