Solve for x
x = \frac{95}{3} = 31\frac{2}{3} \approx 31.666666667
Graph
Share
Copied to clipboard
\left(35-x\right)\left(4-6\right)=\left(x-30\right)\left(6-10\right)
Variable x cannot be equal to any of the values 30,35 since division by zero is not defined. Multiply both sides of the equation by \left(x-35\right)\left(x-30\right), the least common multiple of 30-x,x-35.
\left(35-x\right)\left(-2\right)=\left(x-30\right)\left(6-10\right)
Subtract 6 from 4 to get -2.
-70+2x=\left(x-30\right)\left(6-10\right)
Use the distributive property to multiply 35-x by -2.
-70+2x=\left(x-30\right)\left(-4\right)
Subtract 10 from 6 to get -4.
-70+2x=-4x+120
Use the distributive property to multiply x-30 by -4.
-70+2x+4x=120
Add 4x to both sides.
-70+6x=120
Combine 2x and 4x to get 6x.
6x=120+70
Add 70 to both sides.
6x=190
Add 120 and 70 to get 190.
x=\frac{190}{6}
Divide both sides by 6.
x=\frac{95}{3}
Reduce the fraction \frac{190}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}