Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4-2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{\left(4-2i\right)\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4-2i\right)\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 3+4i-2i\times 3-2i^{2}}{10}
Multiply complex numbers 4-2i and 3+i like you multiply binomials.
\frac{4\times 3+4i-2i\times 3-2\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{12+4i-6i+2}{10}
Do the multiplications in 4\times 3+4i-2i\times 3-2\left(-1\right).
\frac{12+2+\left(4-6\right)i}{10}
Combine the real and imaginary parts in 12+4i-6i+2.
\frac{14-2i}{10}
Do the additions in 12+2+\left(4-6\right)i.
\frac{7}{5}-\frac{1}{5}i
Divide 14-2i by 10 to get \frac{7}{5}-\frac{1}{5}i.
Re(\frac{\left(4-2i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{4-2i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{\left(4-2i\right)\left(3+i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4-2i\right)\left(3+i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 3+4i-2i\times 3-2i^{2}}{10})
Multiply complex numbers 4-2i and 3+i like you multiply binomials.
Re(\frac{4\times 3+4i-2i\times 3-2\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{12+4i-6i+2}{10})
Do the multiplications in 4\times 3+4i-2i\times 3-2\left(-1\right).
Re(\frac{12+2+\left(4-6\right)i}{10})
Combine the real and imaginary parts in 12+4i-6i+2.
Re(\frac{14-2i}{10})
Do the additions in 12+2+\left(4-6\right)i.
Re(\frac{7}{5}-\frac{1}{5}i)
Divide 14-2i by 10 to get \frac{7}{5}-\frac{1}{5}i.
\frac{7}{5}
The real part of \frac{7}{5}-\frac{1}{5}i is \frac{7}{5}.