Evaluate
\frac{\sqrt{14}}{2}-\frac{3}{8}\approx 1.495828693
Factor
\frac{4 \sqrt{14} - 3}{8} = 1.4958286933869707
Share
Copied to clipboard
\frac{4-\left(\frac{4}{4}-\sqrt{14}+\frac{15}{4}\right)}{2}
Convert 1 to fraction \frac{4}{4}.
\frac{4-\left(\frac{4+15}{4}-\sqrt{14}\right)}{2}
Since \frac{4}{4} and \frac{15}{4} have the same denominator, add them by adding their numerators.
\frac{4-\left(\frac{19}{4}-\sqrt{14}\right)}{2}
Add 4 and 15 to get 19.
\frac{4-\frac{19}{4}-\left(-\sqrt{14}\right)}{2}
To find the opposite of \frac{19}{4}-\sqrt{14}, find the opposite of each term.
\frac{\frac{16}{4}-\frac{19}{4}-\left(-\sqrt{14}\right)}{2}
Convert 4 to fraction \frac{16}{4}.
\frac{\frac{16-19}{4}-\left(-\sqrt{14}\right)}{2}
Since \frac{16}{4} and \frac{19}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{3}{4}-\left(-\sqrt{14}\right)}{2}
Subtract 19 from 16 to get -3.
\frac{-\frac{3}{4}+\sqrt{14}}{2}
The opposite of -\sqrt{14} is \sqrt{14}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}