Solve for y
y = \frac{\sqrt{3241} - 44}{5} \approx 2.585956262
y=\frac{-\sqrt{3241}-44}{5}\approx -20.185956262
Graph
Share
Copied to clipboard
3\left(4-y^{2}-8y+25\right)=y\times \frac{16-4y}{3}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3y, the least common multiple of y,3.
3\left(29-y^{2}-8y\right)=y\times \frac{16-4y}{3}
Add 4 and 25 to get 29.
87-3y^{2}-24y=y\times \frac{16-4y}{3}
Use the distributive property to multiply 3 by 29-y^{2}-8y.
87-3y^{2}-24y=\frac{y\left(16-4y\right)}{3}
Express y\times \frac{16-4y}{3} as a single fraction.
87-3y^{2}-24y=\frac{16y-4y^{2}}{3}
Use the distributive property to multiply y by 16-4y.
87-3y^{2}-24y=\frac{16}{3}y-\frac{4}{3}y^{2}
Divide each term of 16y-4y^{2} by 3 to get \frac{16}{3}y-\frac{4}{3}y^{2}.
87-3y^{2}-24y-\frac{16}{3}y=-\frac{4}{3}y^{2}
Subtract \frac{16}{3}y from both sides.
87-3y^{2}-\frac{88}{3}y=-\frac{4}{3}y^{2}
Combine -24y and -\frac{16}{3}y to get -\frac{88}{3}y.
87-3y^{2}-\frac{88}{3}y+\frac{4}{3}y^{2}=0
Add \frac{4}{3}y^{2} to both sides.
87-\frac{5}{3}y^{2}-\frac{88}{3}y=0
Combine -3y^{2} and \frac{4}{3}y^{2} to get -\frac{5}{3}y^{2}.
-\frac{5}{3}y^{2}-\frac{88}{3}y+87=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-\frac{88}{3}\right)±\sqrt{\left(-\frac{88}{3}\right)^{2}-4\left(-\frac{5}{3}\right)\times 87}}{2\left(-\frac{5}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{5}{3} for a, -\frac{88}{3} for b, and 87 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{88}{3}\right)±\sqrt{\frac{7744}{9}-4\left(-\frac{5}{3}\right)\times 87}}{2\left(-\frac{5}{3}\right)}
Square -\frac{88}{3} by squaring both the numerator and the denominator of the fraction.
y=\frac{-\left(-\frac{88}{3}\right)±\sqrt{\frac{7744}{9}+\frac{20}{3}\times 87}}{2\left(-\frac{5}{3}\right)}
Multiply -4 times -\frac{5}{3}.
y=\frac{-\left(-\frac{88}{3}\right)±\sqrt{\frac{7744}{9}+580}}{2\left(-\frac{5}{3}\right)}
Multiply \frac{20}{3} times 87.
y=\frac{-\left(-\frac{88}{3}\right)±\sqrt{\frac{12964}{9}}}{2\left(-\frac{5}{3}\right)}
Add \frac{7744}{9} to 580.
y=\frac{-\left(-\frac{88}{3}\right)±\frac{2\sqrt{3241}}{3}}{2\left(-\frac{5}{3}\right)}
Take the square root of \frac{12964}{9}.
y=\frac{\frac{88}{3}±\frac{2\sqrt{3241}}{3}}{2\left(-\frac{5}{3}\right)}
The opposite of -\frac{88}{3} is \frac{88}{3}.
y=\frac{\frac{88}{3}±\frac{2\sqrt{3241}}{3}}{-\frac{10}{3}}
Multiply 2 times -\frac{5}{3}.
y=\frac{2\sqrt{3241}+88}{-\frac{10}{3}\times 3}
Now solve the equation y=\frac{\frac{88}{3}±\frac{2\sqrt{3241}}{3}}{-\frac{10}{3}} when ± is plus. Add \frac{88}{3} to \frac{2\sqrt{3241}}{3}.
y=\frac{-\sqrt{3241}-44}{5}
Divide \frac{88+2\sqrt{3241}}{3} by -\frac{10}{3} by multiplying \frac{88+2\sqrt{3241}}{3} by the reciprocal of -\frac{10}{3}.
y=\frac{88-2\sqrt{3241}}{-\frac{10}{3}\times 3}
Now solve the equation y=\frac{\frac{88}{3}±\frac{2\sqrt{3241}}{3}}{-\frac{10}{3}} when ± is minus. Subtract \frac{2\sqrt{3241}}{3} from \frac{88}{3}.
y=\frac{\sqrt{3241}-44}{5}
Divide \frac{88-2\sqrt{3241}}{3} by -\frac{10}{3} by multiplying \frac{88-2\sqrt{3241}}{3} by the reciprocal of -\frac{10}{3}.
y=\frac{-\sqrt{3241}-44}{5} y=\frac{\sqrt{3241}-44}{5}
The equation is now solved.
3\left(4-y^{2}-8y+25\right)=y\times \frac{16-4y}{3}
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3y, the least common multiple of y,3.
3\left(29-y^{2}-8y\right)=y\times \frac{16-4y}{3}
Add 4 and 25 to get 29.
87-3y^{2}-24y=y\times \frac{16-4y}{3}
Use the distributive property to multiply 3 by 29-y^{2}-8y.
87-3y^{2}-24y=\frac{y\left(16-4y\right)}{3}
Express y\times \frac{16-4y}{3} as a single fraction.
87-3y^{2}-24y=\frac{16y-4y^{2}}{3}
Use the distributive property to multiply y by 16-4y.
87-3y^{2}-24y=\frac{16}{3}y-\frac{4}{3}y^{2}
Divide each term of 16y-4y^{2} by 3 to get \frac{16}{3}y-\frac{4}{3}y^{2}.
87-3y^{2}-24y-\frac{16}{3}y=-\frac{4}{3}y^{2}
Subtract \frac{16}{3}y from both sides.
87-3y^{2}-\frac{88}{3}y=-\frac{4}{3}y^{2}
Combine -24y and -\frac{16}{3}y to get -\frac{88}{3}y.
87-3y^{2}-\frac{88}{3}y+\frac{4}{3}y^{2}=0
Add \frac{4}{3}y^{2} to both sides.
87-\frac{5}{3}y^{2}-\frac{88}{3}y=0
Combine -3y^{2} and \frac{4}{3}y^{2} to get -\frac{5}{3}y^{2}.
-\frac{5}{3}y^{2}-\frac{88}{3}y=-87
Subtract 87 from both sides. Anything subtracted from zero gives its negation.
\frac{-\frac{5}{3}y^{2}-\frac{88}{3}y}{-\frac{5}{3}}=-\frac{87}{-\frac{5}{3}}
Divide both sides of the equation by -\frac{5}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\left(-\frac{\frac{88}{3}}{-\frac{5}{3}}\right)y=-\frac{87}{-\frac{5}{3}}
Dividing by -\frac{5}{3} undoes the multiplication by -\frac{5}{3}.
y^{2}+\frac{88}{5}y=-\frac{87}{-\frac{5}{3}}
Divide -\frac{88}{3} by -\frac{5}{3} by multiplying -\frac{88}{3} by the reciprocal of -\frac{5}{3}.
y^{2}+\frac{88}{5}y=\frac{261}{5}
Divide -87 by -\frac{5}{3} by multiplying -87 by the reciprocal of -\frac{5}{3}.
y^{2}+\frac{88}{5}y+\left(\frac{44}{5}\right)^{2}=\frac{261}{5}+\left(\frac{44}{5}\right)^{2}
Divide \frac{88}{5}, the coefficient of the x term, by 2 to get \frac{44}{5}. Then add the square of \frac{44}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{88}{5}y+\frac{1936}{25}=\frac{261}{5}+\frac{1936}{25}
Square \frac{44}{5} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{88}{5}y+\frac{1936}{25}=\frac{3241}{25}
Add \frac{261}{5} to \frac{1936}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{44}{5}\right)^{2}=\frac{3241}{25}
Factor y^{2}+\frac{88}{5}y+\frac{1936}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{44}{5}\right)^{2}}=\sqrt{\frac{3241}{25}}
Take the square root of both sides of the equation.
y+\frac{44}{5}=\frac{\sqrt{3241}}{5} y+\frac{44}{5}=-\frac{\sqrt{3241}}{5}
Simplify.
y=\frac{\sqrt{3241}-44}{5} y=\frac{-\sqrt{3241}-44}{5}
Subtract \frac{44}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}