Solve for x
x = \frac{198}{5} = 39\frac{3}{5} = 39.6
Graph
Share
Copied to clipboard
18\left(4-\frac{1}{3}\right)=x\times \frac{5}{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 18x, the least common multiple of x,18.
18\left(\frac{12}{3}-\frac{1}{3}\right)=x\times \frac{5}{3}
Convert 4 to fraction \frac{12}{3}.
18\times \frac{12-1}{3}=x\times \frac{5}{3}
Since \frac{12}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
18\times \frac{11}{3}=x\times \frac{5}{3}
Subtract 1 from 12 to get 11.
\frac{18\times 11}{3}=x\times \frac{5}{3}
Express 18\times \frac{11}{3} as a single fraction.
\frac{198}{3}=x\times \frac{5}{3}
Multiply 18 and 11 to get 198.
66=x\times \frac{5}{3}
Divide 198 by 3 to get 66.
x\times \frac{5}{3}=66
Swap sides so that all variable terms are on the left hand side.
x=66\times \frac{3}{5}
Multiply both sides by \frac{3}{5}, the reciprocal of \frac{5}{3}.
x=\frac{66\times 3}{5}
Express 66\times \frac{3}{5} as a single fraction.
x=\frac{198}{5}
Multiply 66 and 3 to get 198.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}