Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{8x-20}{\left(x-5\right)\left(x+7\right)}\times \frac{\left(x-5\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}
Use the distributive property to multiply 4 by 2x-5.
\frac{8x-20}{x^{2}+7x-5x-35}\times \frac{\left(x-5\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}
Apply the distributive property by multiplying each term of x-5 by each term of x+7.
\frac{8x-20}{x^{2}+2x-35}\times \frac{\left(x-5\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}
Combine 7x and -5x to get 2x.
\frac{8x-20}{x^{2}+2x-35}\times \frac{x-5}{4\left(x+2\right)}
Cancel out x-2 in both numerator and denominator.
\frac{\left(8x-20\right)\left(x-5\right)}{\left(x^{2}+2x-35\right)\times 4\left(x+2\right)}
Multiply \frac{8x-20}{x^{2}+2x-35} times \frac{x-5}{4\left(x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(x-5\right)\left(2x-5\right)}{4\left(x-5\right)\left(x+2\right)\left(x+7\right)}
Factor the expressions that are not already factored.
\frac{2x-5}{\left(x+2\right)\left(x+7\right)}
Cancel out 4\left(x-5\right) in both numerator and denominator.
\frac{2x-5}{x^{2}+9x+14}
Expand the expression.
\frac{8x-20}{\left(x-5\right)\left(x+7\right)}\times \frac{\left(x-5\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}
Use the distributive property to multiply 4 by 2x-5.
\frac{8x-20}{x^{2}+7x-5x-35}\times \frac{\left(x-5\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}
Apply the distributive property by multiplying each term of x-5 by each term of x+7.
\frac{8x-20}{x^{2}+2x-35}\times \frac{\left(x-5\right)\left(x-2\right)}{4\left(x-2\right)\left(x+2\right)}
Combine 7x and -5x to get 2x.
\frac{8x-20}{x^{2}+2x-35}\times \frac{x-5}{4\left(x+2\right)}
Cancel out x-2 in both numerator and denominator.
\frac{\left(8x-20\right)\left(x-5\right)}{\left(x^{2}+2x-35\right)\times 4\left(x+2\right)}
Multiply \frac{8x-20}{x^{2}+2x-35} times \frac{x-5}{4\left(x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{4\left(x-5\right)\left(2x-5\right)}{4\left(x-5\right)\left(x+2\right)\left(x+7\right)}
Factor the expressions that are not already factored.
\frac{2x-5}{\left(x+2\right)\left(x+7\right)}
Cancel out 4\left(x-5\right) in both numerator and denominator.
\frac{2x-5}{x^{2}+9x+14}
Expand the expression.