Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+6i\right)\left(5+2i\right)}{\left(5-2i\right)\left(5+2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 5+2i.
\frac{\left(4+6i\right)\left(5+2i\right)}{5^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+6i\right)\left(5+2i\right)}{29}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4\times 5+4\times \left(2i\right)+6i\times 5+6\times 2i^{2}}{29}
Multiply complex numbers 4+6i and 5+2i like you multiply binomials.
\frac{4\times 5+4\times \left(2i\right)+6i\times 5+6\times 2\left(-1\right)}{29}
By definition, i^{2} is -1.
\frac{20+8i+30i-12}{29}
Do the multiplications in 4\times 5+4\times \left(2i\right)+6i\times 5+6\times 2\left(-1\right).
\frac{20-12+\left(8+30\right)i}{29}
Combine the real and imaginary parts in 20+8i+30i-12.
\frac{8+38i}{29}
Do the additions in 20-12+\left(8+30\right)i.
\frac{8}{29}+\frac{38}{29}i
Divide 8+38i by 29 to get \frac{8}{29}+\frac{38}{29}i.
Re(\frac{\left(4+6i\right)\left(5+2i\right)}{\left(5-2i\right)\left(5+2i\right)})
Multiply both numerator and denominator of \frac{4+6i}{5-2i} by the complex conjugate of the denominator, 5+2i.
Re(\frac{\left(4+6i\right)\left(5+2i\right)}{5^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(4+6i\right)\left(5+2i\right)}{29})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4\times 5+4\times \left(2i\right)+6i\times 5+6\times 2i^{2}}{29})
Multiply complex numbers 4+6i and 5+2i like you multiply binomials.
Re(\frac{4\times 5+4\times \left(2i\right)+6i\times 5+6\times 2\left(-1\right)}{29})
By definition, i^{2} is -1.
Re(\frac{20+8i+30i-12}{29})
Do the multiplications in 4\times 5+4\times \left(2i\right)+6i\times 5+6\times 2\left(-1\right).
Re(\frac{20-12+\left(8+30\right)i}{29})
Combine the real and imaginary parts in 20+8i+30i-12.
Re(\frac{8+38i}{29})
Do the additions in 20-12+\left(8+30\right)i.
Re(\frac{8}{29}+\frac{38}{29}i)
Divide 8+38i by 29 to get \frac{8}{29}+\frac{38}{29}i.
\frac{8}{29}
The real part of \frac{8}{29}+\frac{38}{29}i is \frac{8}{29}.