Evaluate
4\sqrt{5}+20-6\sqrt{2}-6\sqrt{10}\approx 1.485324575
Factor
2 \sqrt{2} {(\sqrt{10} + 5 \sqrt{2} - 3 \sqrt{5} - 3)} = 1.485324575
Share
Copied to clipboard
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{\left(3\sqrt{2}+2\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}
Rationalize the denominator of \frac{4+4\sqrt{5}}{3\sqrt{2}+2\sqrt{5}} by multiplying numerator and denominator by 3\sqrt{2}-2\sqrt{5}.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{5}\right)^{2}}
Consider \left(3\sqrt{2}+2\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{9\times 2-\left(2\sqrt{5}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-\left(2\sqrt{5}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-2^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-4\left(\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-4\times 5}
The square of \sqrt{5} is 5.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-20}
Multiply 4 and 5 to get 20.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{-2}
Subtract 20 from 18 to get -2.
\frac{12\sqrt{2}-8\sqrt{5}+12\sqrt{5}\sqrt{2}-8\left(\sqrt{5}\right)^{2}}{-2}
Apply the distributive property by multiplying each term of 4+4\sqrt{5} by each term of 3\sqrt{2}-2\sqrt{5}.
\frac{12\sqrt{2}-8\sqrt{5}+12\sqrt{10}-8\left(\sqrt{5}\right)^{2}}{-2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{12\sqrt{2}-8\sqrt{5}+12\sqrt{10}-8\times 5}{-2}
The square of \sqrt{5} is 5.
\frac{12\sqrt{2}-8\sqrt{5}+12\sqrt{10}-40}{-2}
Multiply -8 and 5 to get -40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}