Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{\left(3\sqrt{2}+2\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}
Rationalize the denominator of \frac{4+4\sqrt{5}}{3\sqrt{2}+2\sqrt{5}} by multiplying numerator and denominator by 3\sqrt{2}-2\sqrt{5}.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{5}\right)^{2}}
Consider \left(3\sqrt{2}+2\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{9\times 2-\left(2\sqrt{5}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-\left(2\sqrt{5}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-2^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(2\sqrt{5}\right)^{2}.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-4\left(\sqrt{5}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-4\times 5}
The square of \sqrt{5} is 5.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{18-20}
Multiply 4 and 5 to get 20.
\frac{\left(4+4\sqrt{5}\right)\left(3\sqrt{2}-2\sqrt{5}\right)}{-2}
Subtract 20 from 18 to get -2.
\frac{12\sqrt{2}-8\sqrt{5}+12\sqrt{5}\sqrt{2}-8\left(\sqrt{5}\right)^{2}}{-2}
Apply the distributive property by multiplying each term of 4+4\sqrt{5} by each term of 3\sqrt{2}-2\sqrt{5}.
\frac{12\sqrt{2}-8\sqrt{5}+12\sqrt{10}-8\left(\sqrt{5}\right)^{2}}{-2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{12\sqrt{2}-8\sqrt{5}+12\sqrt{10}-8\times 5}{-2}
The square of \sqrt{5} is 5.
\frac{12\sqrt{2}-8\sqrt{5}+12\sqrt{10}-40}{-2}
Multiply -8 and 5 to get -40.