Evaluate
\frac{289}{74}\approx 3.905405405
Factor
\frac{17 ^ {2}}{2 \cdot 37} = 3\frac{67}{74} = 3.9054054054054053
Share
Copied to clipboard
\frac{\frac{32}{8}+\frac{1}{8}-\left(-10-6\right)\times 2}{5+7-\left(-\frac{1}{4}\right)-3}
Convert 4 to fraction \frac{32}{8}.
\frac{\frac{32+1}{8}-\left(-10-6\right)\times 2}{5+7-\left(-\frac{1}{4}\right)-3}
Since \frac{32}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{33}{8}-\left(-10-6\right)\times 2}{5+7-\left(-\frac{1}{4}\right)-3}
Add 32 and 1 to get 33.
\frac{\frac{33}{8}-\left(-16\times 2\right)}{5+7-\left(-\frac{1}{4}\right)-3}
Subtract 6 from -10 to get -16.
\frac{\frac{33}{8}-\left(-32\right)}{5+7-\left(-\frac{1}{4}\right)-3}
Multiply -16 and 2 to get -32.
\frac{\frac{33}{8}+32}{5+7-\left(-\frac{1}{4}\right)-3}
The opposite of -32 is 32.
\frac{\frac{33}{8}+\frac{256}{8}}{5+7-\left(-\frac{1}{4}\right)-3}
Convert 32 to fraction \frac{256}{8}.
\frac{\frac{33+256}{8}}{5+7-\left(-\frac{1}{4}\right)-3}
Since \frac{33}{8} and \frac{256}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{289}{8}}{5+7-\left(-\frac{1}{4}\right)-3}
Add 33 and 256 to get 289.
\frac{\frac{289}{8}}{12-\left(-\frac{1}{4}\right)-3}
Add 5 and 7 to get 12.
\frac{\frac{289}{8}}{12+\frac{1}{4}-3}
The opposite of -\frac{1}{4} is \frac{1}{4}.
\frac{\frac{289}{8}}{\frac{48}{4}+\frac{1}{4}-3}
Convert 12 to fraction \frac{48}{4}.
\frac{\frac{289}{8}}{\frac{48+1}{4}-3}
Since \frac{48}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{289}{8}}{\frac{49}{4}-3}
Add 48 and 1 to get 49.
\frac{\frac{289}{8}}{\frac{49}{4}-\frac{12}{4}}
Convert 3 to fraction \frac{12}{4}.
\frac{\frac{289}{8}}{\frac{49-12}{4}}
Since \frac{49}{4} and \frac{12}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{289}{8}}{\frac{37}{4}}
Subtract 12 from 49 to get 37.
\frac{289}{8}\times \frac{4}{37}
Divide \frac{289}{8} by \frac{37}{4} by multiplying \frac{289}{8} by the reciprocal of \frac{37}{4}.
\frac{289\times 4}{8\times 37}
Multiply \frac{289}{8} times \frac{4}{37} by multiplying numerator times numerator and denominator times denominator.
\frac{1156}{296}
Do the multiplications in the fraction \frac{289\times 4}{8\times 37}.
\frac{289}{74}
Reduce the fraction \frac{1156}{296} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}