Solve for x
x = -\frac{\sqrt{6 \sqrt{731} + 254}}{10} \approx -2.040152127
x = \frac{\sqrt{6 \sqrt{731} + 254}}{10} \approx 2.040152127
x=\frac{\sqrt{254-6\sqrt{731}}}{10}\approx 0.958007985
x=-\frac{\sqrt{254-6\sqrt{731}}}{10}\approx -0.958007985
Graph
Share
Copied to clipboard
4x^{2}+9=50\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)
Variable x cannot be equal to any of the values -2,-1,1,2 since division by zero is not defined. Multiply both sides of the equation by \left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right).
4x^{2}+9=\left(50x-100\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)
Use the distributive property to multiply 50 by x-2.
4x^{2}+9=\left(50x^{2}-150x+100\right)\left(x+1\right)\left(x+2\right)
Use the distributive property to multiply 50x-100 by x-1 and combine like terms.
4x^{2}+9=\left(50x^{3}-100x^{2}-50x+100\right)\left(x+2\right)
Use the distributive property to multiply 50x^{2}-150x+100 by x+1 and combine like terms.
4x^{2}+9=50x^{4}-250x^{2}+200
Use the distributive property to multiply 50x^{3}-100x^{2}-50x+100 by x+2 and combine like terms.
4x^{2}+9-50x^{4}=-250x^{2}+200
Subtract 50x^{4} from both sides.
4x^{2}+9-50x^{4}+250x^{2}=200
Add 250x^{2} to both sides.
254x^{2}+9-50x^{4}=200
Combine 4x^{2} and 250x^{2} to get 254x^{2}.
254x^{2}+9-50x^{4}-200=0
Subtract 200 from both sides.
254x^{2}-191-50x^{4}=0
Subtract 200 from 9 to get -191.
-50t^{2}+254t-191=0
Substitute t for x^{2}.
t=\frac{-254±\sqrt{254^{2}-4\left(-50\right)\left(-191\right)}}{-50\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -50 for a, 254 for b, and -191 for c in the quadratic formula.
t=\frac{-254±6\sqrt{731}}{-100}
Do the calculations.
t=\frac{127-3\sqrt{731}}{50} t=\frac{3\sqrt{731}+127}{50}
Solve the equation t=\frac{-254±6\sqrt{731}}{-100} when ± is plus and when ± is minus.
x=\frac{\sqrt{254-6\sqrt{731}}}{10} x=-\frac{\sqrt{254-6\sqrt{731}}}{10} x=\frac{\sqrt{6\sqrt{731}+254}}{10} x=-\frac{\sqrt{6\sqrt{731}+254}}{10}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}