Evaluate
\frac{2\sqrt{3}\left(\sqrt{6}-1\right)}{5}\approx 1.004235952
Share
Copied to clipboard
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{\left(4\sqrt{3}+2\sqrt{2}\right)\left(4\sqrt{3}-2\sqrt{2}\right)}
Rationalize the denominator of \frac{4\sqrt{6}}{4\sqrt{3}+2\sqrt{2}} by multiplying numerator and denominator by 4\sqrt{3}-2\sqrt{2}.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Consider \left(4\sqrt{3}+2\sqrt{2}\right)\left(4\sqrt{3}-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{16\times 3-\left(2\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{48-\left(2\sqrt{2}\right)^{2}}
Multiply 16 and 3 to get 48.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{48-2^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{48-4\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{48-4\times 2}
The square of \sqrt{2} is 2.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{48-8}
Multiply 4 and 2 to get 8.
\frac{4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)}{40}
Subtract 8 from 48 to get 40.
\frac{1}{10}\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right)
Divide 4\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right) by 40 to get \frac{1}{10}\sqrt{6}\left(4\sqrt{3}-2\sqrt{2}\right).
\frac{1}{10}\sqrt{6}\times 4\sqrt{3}+\frac{1}{10}\sqrt{6}\left(-2\right)\sqrt{2}
Use the distributive property to multiply \frac{1}{10}\sqrt{6} by 4\sqrt{3}-2\sqrt{2}.
\frac{1}{10}\sqrt{3}\sqrt{2}\times 4\sqrt{3}+\frac{1}{10}\sqrt{6}\left(-2\right)\sqrt{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{1}{10}\times 3\times 4\sqrt{2}+\frac{1}{10}\sqrt{6}\left(-2\right)\sqrt{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3}{10}\times 4\sqrt{2}+\frac{1}{10}\sqrt{6}\left(-2\right)\sqrt{2}
Multiply \frac{1}{10} and 3 to get \frac{3}{10}.
\frac{3\times 4}{10}\sqrt{2}+\frac{1}{10}\sqrt{6}\left(-2\right)\sqrt{2}
Express \frac{3}{10}\times 4 as a single fraction.
\frac{12}{10}\sqrt{2}+\frac{1}{10}\sqrt{6}\left(-2\right)\sqrt{2}
Multiply 3 and 4 to get 12.
\frac{6}{5}\sqrt{2}+\frac{1}{10}\sqrt{6}\left(-2\right)\sqrt{2}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\frac{6}{5}\sqrt{2}+\frac{1}{10}\sqrt{2}\sqrt{3}\left(-2\right)\sqrt{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{6}{5}\sqrt{2}+\frac{1}{10}\times 2\left(-2\right)\sqrt{3}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{6}{5}\sqrt{2}+\frac{2}{10}\left(-2\right)\sqrt{3}
Multiply \frac{1}{10} and 2 to get \frac{2}{10}.
\frac{6}{5}\sqrt{2}+\frac{1}{5}\left(-2\right)\sqrt{3}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{6}{5}\sqrt{2}+\frac{-2}{5}\sqrt{3}
Multiply \frac{1}{5} and -2 to get \frac{-2}{5}.
\frac{6}{5}\sqrt{2}-\frac{2}{5}\sqrt{3}
Fraction \frac{-2}{5} can be rewritten as -\frac{2}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}