Evaluate
\frac{16\sqrt{3}}{5}\approx 5.542562584
Quiz
Arithmetic
5 problems similar to:
\frac{ 4 \sqrt{ 54 } +4 \sqrt{ 6 } }{ 4 \sqrt{ 8 } -3 \sqrt{ 2 } }
Share
Copied to clipboard
\frac{4\times 3\sqrt{6}+4\sqrt{6}}{4\sqrt{8}-3\sqrt{2}}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
\frac{12\sqrt{6}+4\sqrt{6}}{4\sqrt{8}-3\sqrt{2}}
Multiply 4 and 3 to get 12.
\frac{16\sqrt{6}}{4\sqrt{8}-3\sqrt{2}}
Combine 12\sqrt{6} and 4\sqrt{6} to get 16\sqrt{6}.
\frac{16\sqrt{6}}{4\times 2\sqrt{2}-3\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{16\sqrt{6}}{8\sqrt{2}-3\sqrt{2}}
Multiply 4 and 2 to get 8.
\frac{16\sqrt{6}}{5\sqrt{2}}
Combine 8\sqrt{2} and -3\sqrt{2} to get 5\sqrt{2}.
\frac{16\sqrt{6}\sqrt{2}}{5\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{16\sqrt{6}}{5\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{16\sqrt{6}\sqrt{2}}{5\times 2}
The square of \sqrt{2} is 2.
\frac{16\sqrt{2}\sqrt{3}\sqrt{2}}{5\times 2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{16\times 2\sqrt{3}}{5\times 2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{16\times 2\sqrt{3}}{10}
Multiply 5 and 2 to get 10.
\frac{32\sqrt{3}}{10}
Multiply 16 and 2 to get 32.
\frac{16}{5}\sqrt{3}
Divide 32\sqrt{3} by 10 to get \frac{16}{5}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}