Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\sqrt{3}\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}
Rationalize the denominator of \frac{4\sqrt{3}}{\sqrt{5}-\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}+\sqrt{3}.
\frac{4\sqrt{3}\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(\sqrt{5}+\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{4\sqrt{3}\left(\sqrt{5}+\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{4\sqrt{3}\sqrt{5}+4\left(\sqrt{3}\right)^{2}}{2}
Use the distributive property to multiply 4\sqrt{3} by \sqrt{5}+\sqrt{3}.
\frac{4\sqrt{15}+4\left(\sqrt{3}\right)^{2}}{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{4\sqrt{15}+4\times 3}{2}
The square of \sqrt{3} is 3.
\frac{4\sqrt{15}+12}{2}
Multiply 4 and 3 to get 12.