Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\times 3\sqrt{2}-6\sqrt{6}}{3\sqrt{2}+2\sqrt{6}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{12\sqrt{2}-6\sqrt{6}}{3\sqrt{2}+2\sqrt{6}}
Multiply 4 and 3 to get 12.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{\left(3\sqrt{2}+2\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}
Rationalize the denominator of \frac{12\sqrt{2}-6\sqrt{6}}{3\sqrt{2}+2\sqrt{6}} by multiplying numerator and denominator by 3\sqrt{2}-2\sqrt{6}.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{6}\right)^{2}}
Consider \left(3\sqrt{2}+2\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{6}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{6}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{9\times 2-\left(2\sqrt{6}\right)^{2}}
The square of \sqrt{2} is 2.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{18-\left(2\sqrt{6}\right)^{2}}
Multiply 9 and 2 to get 18.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{18-2^{2}\left(\sqrt{6}\right)^{2}}
Expand \left(2\sqrt{6}\right)^{2}.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{18-4\left(\sqrt{6}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{18-4\times 6}
The square of \sqrt{6} is 6.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{18-24}
Multiply 4 and 6 to get 24.
\frac{\left(12\sqrt{2}-6\sqrt{6}\right)\left(3\sqrt{2}-2\sqrt{6}\right)}{-6}
Subtract 24 from 18 to get -6.
\frac{36\left(\sqrt{2}\right)^{2}-24\sqrt{2}\sqrt{6}-18\sqrt{6}\sqrt{2}+12\left(\sqrt{6}\right)^{2}}{-6}
Apply the distributive property by multiplying each term of 12\sqrt{2}-6\sqrt{6} by each term of 3\sqrt{2}-2\sqrt{6}.
\frac{36\times 2-24\sqrt{2}\sqrt{6}-18\sqrt{6}\sqrt{2}+12\left(\sqrt{6}\right)^{2}}{-6}
The square of \sqrt{2} is 2.
\frac{72-24\sqrt{2}\sqrt{6}-18\sqrt{6}\sqrt{2}+12\left(\sqrt{6}\right)^{2}}{-6}
Multiply 36 and 2 to get 72.
\frac{72-24\sqrt{2}\sqrt{2}\sqrt{3}-18\sqrt{6}\sqrt{2}+12\left(\sqrt{6}\right)^{2}}{-6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{72-24\times 2\sqrt{3}-18\sqrt{6}\sqrt{2}+12\left(\sqrt{6}\right)^{2}}{-6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{72-48\sqrt{3}-18\sqrt{6}\sqrt{2}+12\left(\sqrt{6}\right)^{2}}{-6}
Multiply -24 and 2 to get -48.
\frac{72-48\sqrt{3}-18\sqrt{2}\sqrt{3}\sqrt{2}+12\left(\sqrt{6}\right)^{2}}{-6}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{72-48\sqrt{3}-18\times 2\sqrt{3}+12\left(\sqrt{6}\right)^{2}}{-6}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{72-48\sqrt{3}-36\sqrt{3}+12\left(\sqrt{6}\right)^{2}}{-6}
Multiply -18 and 2 to get -36.
\frac{72-84\sqrt{3}+12\left(\sqrt{6}\right)^{2}}{-6}
Combine -48\sqrt{3} and -36\sqrt{3} to get -84\sqrt{3}.
\frac{72-84\sqrt{3}+12\times 6}{-6}
The square of \sqrt{6} is 6.
\frac{72-84\sqrt{3}+72}{-6}
Multiply 12 and 6 to get 72.
\frac{144-84\sqrt{3}}{-6}
Add 72 and 72 to get 144.