Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x+2\right)\times 4=\left(x+3\right)\left(2x+3\right)+\left(x+2\right)\left(x+3\right)\left(-6\right)
Variable x cannot be equal to any of the values -3,-2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(x+3\right), the least common multiple of x+3,x+2.
4x+8=\left(x+3\right)\left(2x+3\right)+\left(x+2\right)\left(x+3\right)\left(-6\right)
Use the distributive property to multiply x+2 by 4.
4x+8=2x^{2}+9x+9+\left(x+2\right)\left(x+3\right)\left(-6\right)
Use the distributive property to multiply x+3 by 2x+3 and combine like terms.
4x+8=2x^{2}+9x+9+\left(x^{2}+5x+6\right)\left(-6\right)
Use the distributive property to multiply x+2 by x+3 and combine like terms.
4x+8=2x^{2}+9x+9-6x^{2}-30x-36
Use the distributive property to multiply x^{2}+5x+6 by -6.
4x+8=-4x^{2}+9x+9-30x-36
Combine 2x^{2} and -6x^{2} to get -4x^{2}.
4x+8=-4x^{2}-21x+9-36
Combine 9x and -30x to get -21x.
4x+8=-4x^{2}-21x-27
Subtract 36 from 9 to get -27.
4x+8+4x^{2}=-21x-27
Add 4x^{2} to both sides.
4x+8+4x^{2}+21x=-27
Add 21x to both sides.
25x+8+4x^{2}=-27
Combine 4x and 21x to get 25x.
25x+8+4x^{2}+27=0
Add 27 to both sides.
25x+35+4x^{2}=0
Add 8 and 27 to get 35.
4x^{2}+25x+35=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±\sqrt{25^{2}-4\times 4\times 35}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 25 for b, and 35 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-25±\sqrt{625-4\times 4\times 35}}{2\times 4}
Square 25.
x=\frac{-25±\sqrt{625-16\times 35}}{2\times 4}
Multiply -4 times 4.
x=\frac{-25±\sqrt{625-560}}{2\times 4}
Multiply -16 times 35.
x=\frac{-25±\sqrt{65}}{2\times 4}
Add 625 to -560.
x=\frac{-25±\sqrt{65}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{65}-25}{8}
Now solve the equation x=\frac{-25±\sqrt{65}}{8} when ± is plus. Add -25 to \sqrt{65}.
x=\frac{-\sqrt{65}-25}{8}
Now solve the equation x=\frac{-25±\sqrt{65}}{8} when ± is minus. Subtract \sqrt{65} from -25.
x=\frac{\sqrt{65}-25}{8} x=\frac{-\sqrt{65}-25}{8}
The equation is now solved.
\left(x+2\right)\times 4=\left(x+3\right)\left(2x+3\right)+\left(x+2\right)\left(x+3\right)\left(-6\right)
Variable x cannot be equal to any of the values -3,-2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(x+3\right), the least common multiple of x+3,x+2.
4x+8=\left(x+3\right)\left(2x+3\right)+\left(x+2\right)\left(x+3\right)\left(-6\right)
Use the distributive property to multiply x+2 by 4.
4x+8=2x^{2}+9x+9+\left(x+2\right)\left(x+3\right)\left(-6\right)
Use the distributive property to multiply x+3 by 2x+3 and combine like terms.
4x+8=2x^{2}+9x+9+\left(x^{2}+5x+6\right)\left(-6\right)
Use the distributive property to multiply x+2 by x+3 and combine like terms.
4x+8=2x^{2}+9x+9-6x^{2}-30x-36
Use the distributive property to multiply x^{2}+5x+6 by -6.
4x+8=-4x^{2}+9x+9-30x-36
Combine 2x^{2} and -6x^{2} to get -4x^{2}.
4x+8=-4x^{2}-21x+9-36
Combine 9x and -30x to get -21x.
4x+8=-4x^{2}-21x-27
Subtract 36 from 9 to get -27.
4x+8+4x^{2}=-21x-27
Add 4x^{2} to both sides.
4x+8+4x^{2}+21x=-27
Add 21x to both sides.
25x+8+4x^{2}=-27
Combine 4x and 21x to get 25x.
25x+4x^{2}=-27-8
Subtract 8 from both sides.
25x+4x^{2}=-35
Subtract 8 from -27 to get -35.
4x^{2}+25x=-35
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+25x}{4}=-\frac{35}{4}
Divide both sides by 4.
x^{2}+\frac{25}{4}x=-\frac{35}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{25}{4}x+\left(\frac{25}{8}\right)^{2}=-\frac{35}{4}+\left(\frac{25}{8}\right)^{2}
Divide \frac{25}{4}, the coefficient of the x term, by 2 to get \frac{25}{8}. Then add the square of \frac{25}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{25}{4}x+\frac{625}{64}=-\frac{35}{4}+\frac{625}{64}
Square \frac{25}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{25}{4}x+\frac{625}{64}=\frac{65}{64}
Add -\frac{35}{4} to \frac{625}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{25}{8}\right)^{2}=\frac{65}{64}
Factor x^{2}+\frac{25}{4}x+\frac{625}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{8}\right)^{2}}=\sqrt{\frac{65}{64}}
Take the square root of both sides of the equation.
x+\frac{25}{8}=\frac{\sqrt{65}}{8} x+\frac{25}{8}=-\frac{\sqrt{65}}{8}
Simplify.
x=\frac{\sqrt{65}-25}{8} x=\frac{-\sqrt{65}-25}{8}
Subtract \frac{25}{8} from both sides of the equation.