Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{4\left(a+3\right)}{\left(a-3\right)\left(a+3\right)}+\frac{3\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{24}{a^{2}-9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-3 and a+3 is \left(a-3\right)\left(a+3\right). Multiply \frac{4}{a-3} times \frac{a+3}{a+3}. Multiply \frac{3}{a+3} times \frac{a-3}{a-3}.
\frac{4\left(a+3\right)+3\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}-\frac{24}{a^{2}-9}
Since \frac{4\left(a+3\right)}{\left(a-3\right)\left(a+3\right)} and \frac{3\left(a-3\right)}{\left(a-3\right)\left(a+3\right)} have the same denominator, add them by adding their numerators.
\frac{4a+12+3a-9}{\left(a-3\right)\left(a+3\right)}-\frac{24}{a^{2}-9}
Do the multiplications in 4\left(a+3\right)+3\left(a-3\right).
\frac{7a+3}{\left(a-3\right)\left(a+3\right)}-\frac{24}{a^{2}-9}
Combine like terms in 4a+12+3a-9.
\frac{7a+3}{\left(a-3\right)\left(a+3\right)}-\frac{24}{\left(a-3\right)\left(a+3\right)}
Factor a^{2}-9.
\frac{7a+3-24}{\left(a-3\right)\left(a+3\right)}
Since \frac{7a+3}{\left(a-3\right)\left(a+3\right)} and \frac{24}{\left(a-3\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{7a-21}{\left(a-3\right)\left(a+3\right)}
Combine like terms in 7a+3-24.
\frac{7\left(a-3\right)}{\left(a-3\right)\left(a+3\right)}
Factor the expressions that are not already factored in \frac{7a-21}{\left(a-3\right)\left(a+3\right)}.
\frac{7}{a+3}
Cancel out a-3 in both numerator and denominator.