Verify
true
Share
Copied to clipboard
\frac{4}{8}+\frac{1}{6-2}=\frac{5\times 6-6}{6^{2}-4}
Add 6 and 2 to get 8.
\frac{1}{2}+\frac{1}{6-2}=\frac{5\times 6-6}{6^{2}-4}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
\frac{1}{2}+\frac{1}{4}=\frac{5\times 6-6}{6^{2}-4}
Subtract 2 from 6 to get 4.
\frac{2}{4}+\frac{1}{4}=\frac{5\times 6-6}{6^{2}-4}
Least common multiple of 2 and 4 is 4. Convert \frac{1}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{2+1}{4}=\frac{5\times 6-6}{6^{2}-4}
Since \frac{2}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{3}{4}=\frac{5\times 6-6}{6^{2}-4}
Add 2 and 1 to get 3.
\frac{3}{4}=\frac{30-6}{6^{2}-4}
Multiply 5 and 6 to get 30.
\frac{3}{4}=\frac{24}{6^{2}-4}
Subtract 6 from 30 to get 24.
\frac{3}{4}=\frac{24}{36-4}
Calculate 6 to the power of 2 and get 36.
\frac{3}{4}=\frac{24}{32}
Subtract 4 from 36 to get 32.
\frac{3}{4}=\frac{3}{4}
Reduce the fraction \frac{24}{32} to lowest terms by extracting and canceling out 8.
\text{true}
Compare \frac{3}{4} and \frac{3}{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}