Solve for x
x>-12
Graph
Share
Copied to clipboard
\frac{2}{3}x+\frac{2}{4}\left(2x-8\right)<2x
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x+\frac{1}{2}\left(2x-8\right)<2x
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x+\frac{1}{2}\times 2x+\frac{1}{2}\left(-8\right)<2x
Use the distributive property to multiply \frac{1}{2} by 2x-8.
\frac{2}{3}x+x+\frac{1}{2}\left(-8\right)<2x
Cancel out 2 and 2.
\frac{2}{3}x+x+\frac{-8}{2}<2x
Multiply \frac{1}{2} and -8 to get \frac{-8}{2}.
\frac{2}{3}x+x-4<2x
Divide -8 by 2 to get -4.
\frac{5}{3}x-4<2x
Combine \frac{2}{3}x and x to get \frac{5}{3}x.
\frac{5}{3}x-4-2x<0
Subtract 2x from both sides.
-\frac{1}{3}x-4<0
Combine \frac{5}{3}x and -2x to get -\frac{1}{3}x.
-\frac{1}{3}x<4
Add 4 to both sides. Anything plus zero gives itself.
x>4\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}. Since -\frac{1}{3} is negative, the inequality direction is changed.
x>-12
Multiply 4 and -3 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}