Solve for x
x\in \left(0,7\right)
Graph
Share
Copied to clipboard
\frac{4\times 2}{10x}+\frac{x}{10x}<\frac{3}{2x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5x and 10 is 10x. Multiply \frac{4}{5x} times \frac{2}{2}. Multiply \frac{1}{10} times \frac{x}{x}.
\frac{4\times 2+x}{10x}<\frac{3}{2x}
Since \frac{4\times 2}{10x} and \frac{x}{10x} have the same denominator, add them by adding their numerators.
\frac{8+x}{10x}<\frac{3}{2x}
Do the multiplications in 4\times 2+x.
\frac{8+x}{10x}-\frac{3}{2x}<0
Subtract \frac{3}{2x} from both sides.
\frac{8+x}{10x}-\frac{3\times 5}{10x}<0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 10x and 2x is 10x. Multiply \frac{3}{2x} times \frac{5}{5}.
\frac{8+x-3\times 5}{10x}<0
Since \frac{8+x}{10x} and \frac{3\times 5}{10x} have the same denominator, subtract them by subtracting their numerators.
\frac{8+x-15}{10x}<0
Do the multiplications in 8+x-3\times 5.
\frac{-7+x}{10x}<0
Combine like terms in 8+x-15.
x-7>0 10x<0
For the quotient to be negative, x-7 and 10x have to be of the opposite signs. Consider the case when x-7 is positive and 10x is negative.
x\in \emptyset
This is false for any x.
10x>0 x-7<0
Consider the case when 10x is positive and x-7 is negative.
x\in \left(0,7\right)
The solution satisfying both inequalities is x\in \left(0,7\right).
x\in \left(0,7\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}