Solve for x
x>30
Graph
Share
Copied to clipboard
\frac{4}{5}x>1+23
Add 23 to both sides.
\frac{4}{5}x>24
Add 1 and 23 to get 24.
x>24\times \frac{5}{4}
Multiply both sides by \frac{5}{4}, the reciprocal of \frac{4}{5}. Since \frac{4}{5} is positive, the inequality direction remains the same.
x>\frac{24\times 5}{4}
Express 24\times \frac{5}{4} as a single fraction.
x>\frac{120}{4}
Multiply 24 and 5 to get 120.
x>30
Divide 120 by 4 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}