Solve for x
x=-4
x = \frac{18}{5} = 3\frac{3}{5} = 3.6
Graph
Share
Copied to clipboard
\frac{4}{3}x\times 4+\frac{4}{3}xx=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-3\right)+10\right)\times \frac{1}{2}
Use the distributive property to multiply \frac{4}{3}x by 4+x.
\frac{4}{3}x\times 4+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-3\right)+10\right)\times \frac{1}{2}
Multiply x and x to get x^{2}.
\frac{4\times 4}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-3\right)+10\right)\times \frac{1}{2}
Express \frac{4}{3}\times 4 as a single fraction.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-3\right)+10\right)\times \frac{1}{2}
Multiply 4 and 4 to get 16.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-\frac{9}{3}\right)+10\right)\times \frac{1}{2}
Convert 3 to fraction \frac{9}{3}.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\times \frac{4-9}{3}+10\right)\times \frac{1}{2}
Since \frac{4}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(-\frac{5}{3}\right)+10\right)\times \frac{1}{2}
Subtract 9 from 4 to get -5.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6\left(-5\right)}{5\times 3}+10\right)\times \frac{1}{2}
Multiply \frac{6}{5} times -\frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{-30}{15}+10\right)\times \frac{1}{2}
Do the multiplications in the fraction \frac{6\left(-5\right)}{5\times 3}.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(-2+10\right)\times \frac{1}{2}
Divide -30 by 15 to get -2.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\times 8\times \frac{1}{2}
Add -2 and 10 to get 8.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6\times 8}{5}\left(x+4\right)\times \frac{1}{2}
Express \frac{6}{5}\times 8 as a single fraction.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{48}{5}\left(x+4\right)\times \frac{1}{2}
Multiply 6 and 8 to get 48.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{48\times 1}{5\times 2}\left(x+4\right)
Multiply \frac{48}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{48}{10}\left(x+4\right)
Do the multiplications in the fraction \frac{48\times 1}{5\times 2}.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{24}{5}\left(x+4\right)
Reduce the fraction \frac{48}{10} to lowest terms by extracting and canceling out 2.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{24}{5}x+\frac{24}{5}\times 4
Use the distributive property to multiply \frac{24}{5} by x+4.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{24}{5}x+\frac{24\times 4}{5}
Express \frac{24}{5}\times 4 as a single fraction.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{24}{5}x+\frac{96}{5}
Multiply 24 and 4 to get 96.
\frac{16}{3}x+\frac{4}{3}x^{2}-\frac{24}{5}x=\frac{96}{5}
Subtract \frac{24}{5}x from both sides.
\frac{8}{15}x+\frac{4}{3}x^{2}=\frac{96}{5}
Combine \frac{16}{3}x and -\frac{24}{5}x to get \frac{8}{15}x.
\frac{8}{15}x+\frac{4}{3}x^{2}-\frac{96}{5}=0
Subtract \frac{96}{5} from both sides.
\frac{4}{3}x^{2}+\frac{8}{15}x-\frac{96}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{8}{15}±\sqrt{\left(\frac{8}{15}\right)^{2}-4\times \frac{4}{3}\left(-\frac{96}{5}\right)}}{2\times \frac{4}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{4}{3} for a, \frac{8}{15} for b, and -\frac{96}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{8}{15}±\sqrt{\frac{64}{225}-4\times \frac{4}{3}\left(-\frac{96}{5}\right)}}{2\times \frac{4}{3}}
Square \frac{8}{15} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{8}{15}±\sqrt{\frac{64}{225}-\frac{16}{3}\left(-\frac{96}{5}\right)}}{2\times \frac{4}{3}}
Multiply -4 times \frac{4}{3}.
x=\frac{-\frac{8}{15}±\sqrt{\frac{64}{225}+\frac{512}{5}}}{2\times \frac{4}{3}}
Multiply -\frac{16}{3} times -\frac{96}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{8}{15}±\sqrt{\frac{23104}{225}}}{2\times \frac{4}{3}}
Add \frac{64}{225} to \frac{512}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{8}{15}±\frac{152}{15}}{2\times \frac{4}{3}}
Take the square root of \frac{23104}{225}.
x=\frac{-\frac{8}{15}±\frac{152}{15}}{\frac{8}{3}}
Multiply 2 times \frac{4}{3}.
x=\frac{\frac{48}{5}}{\frac{8}{3}}
Now solve the equation x=\frac{-\frac{8}{15}±\frac{152}{15}}{\frac{8}{3}} when ± is plus. Add -\frac{8}{15} to \frac{152}{15} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{18}{5}
Divide \frac{48}{5} by \frac{8}{3} by multiplying \frac{48}{5} by the reciprocal of \frac{8}{3}.
x=-\frac{\frac{32}{3}}{\frac{8}{3}}
Now solve the equation x=\frac{-\frac{8}{15}±\frac{152}{15}}{\frac{8}{3}} when ± is minus. Subtract \frac{152}{15} from -\frac{8}{15} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-4
Divide -\frac{32}{3} by \frac{8}{3} by multiplying -\frac{32}{3} by the reciprocal of \frac{8}{3}.
x=\frac{18}{5} x=-4
The equation is now solved.
\frac{4}{3}x\times 4+\frac{4}{3}xx=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-3\right)+10\right)\times \frac{1}{2}
Use the distributive property to multiply \frac{4}{3}x by 4+x.
\frac{4}{3}x\times 4+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-3\right)+10\right)\times \frac{1}{2}
Multiply x and x to get x^{2}.
\frac{4\times 4}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-3\right)+10\right)\times \frac{1}{2}
Express \frac{4}{3}\times 4 as a single fraction.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-3\right)+10\right)\times \frac{1}{2}
Multiply 4 and 4 to get 16.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(\frac{4}{3}-\frac{9}{3}\right)+10\right)\times \frac{1}{2}
Convert 3 to fraction \frac{9}{3}.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\times \frac{4-9}{3}+10\right)\times \frac{1}{2}
Since \frac{4}{3} and \frac{9}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6}{5}\left(-\frac{5}{3}\right)+10\right)\times \frac{1}{2}
Subtract 9 from 4 to get -5.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{6\left(-5\right)}{5\times 3}+10\right)\times \frac{1}{2}
Multiply \frac{6}{5} times -\frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(\frac{-30}{15}+10\right)\times \frac{1}{2}
Do the multiplications in the fraction \frac{6\left(-5\right)}{5\times 3}.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\left(-2+10\right)\times \frac{1}{2}
Divide -30 by 15 to get -2.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6}{5}\left(x+4\right)\times 8\times \frac{1}{2}
Add -2 and 10 to get 8.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{6\times 8}{5}\left(x+4\right)\times \frac{1}{2}
Express \frac{6}{5}\times 8 as a single fraction.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{48}{5}\left(x+4\right)\times \frac{1}{2}
Multiply 6 and 8 to get 48.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{48\times 1}{5\times 2}\left(x+4\right)
Multiply \frac{48}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{48}{10}\left(x+4\right)
Do the multiplications in the fraction \frac{48\times 1}{5\times 2}.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{24}{5}\left(x+4\right)
Reduce the fraction \frac{48}{10} to lowest terms by extracting and canceling out 2.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{24}{5}x+\frac{24}{5}\times 4
Use the distributive property to multiply \frac{24}{5} by x+4.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{24}{5}x+\frac{24\times 4}{5}
Express \frac{24}{5}\times 4 as a single fraction.
\frac{16}{3}x+\frac{4}{3}x^{2}=\frac{24}{5}x+\frac{96}{5}
Multiply 24 and 4 to get 96.
\frac{16}{3}x+\frac{4}{3}x^{2}-\frac{24}{5}x=\frac{96}{5}
Subtract \frac{24}{5}x from both sides.
\frac{8}{15}x+\frac{4}{3}x^{2}=\frac{96}{5}
Combine \frac{16}{3}x and -\frac{24}{5}x to get \frac{8}{15}x.
\frac{4}{3}x^{2}+\frac{8}{15}x=\frac{96}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{4}{3}x^{2}+\frac{8}{15}x}{\frac{4}{3}}=\frac{\frac{96}{5}}{\frac{4}{3}}
Divide both sides of the equation by \frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{8}{15}}{\frac{4}{3}}x=\frac{\frac{96}{5}}{\frac{4}{3}}
Dividing by \frac{4}{3} undoes the multiplication by \frac{4}{3}.
x^{2}+\frac{2}{5}x=\frac{\frac{96}{5}}{\frac{4}{3}}
Divide \frac{8}{15} by \frac{4}{3} by multiplying \frac{8}{15} by the reciprocal of \frac{4}{3}.
x^{2}+\frac{2}{5}x=\frac{72}{5}
Divide \frac{96}{5} by \frac{4}{3} by multiplying \frac{96}{5} by the reciprocal of \frac{4}{3}.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{72}{5}+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{72}{5}+\frac{1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{361}{25}
Add \frac{72}{5} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{5}\right)^{2}=\frac{361}{25}
Factor x^{2}+\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{\frac{361}{25}}
Take the square root of both sides of the equation.
x+\frac{1}{5}=\frac{19}{5} x+\frac{1}{5}=-\frac{19}{5}
Simplify.
x=\frac{18}{5} x=-4
Subtract \frac{1}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}