Solve for u
u = -\frac{25}{6} = -4\frac{1}{6} \approx -4.166666667
Share
Copied to clipboard
\left(2u+3\right)\times 4+10=2u-3
Variable u cannot be equal to any of the values -\frac{3}{2},\frac{3}{2} since division by zero is not defined. Multiply both sides of the equation by \left(2u-3\right)\left(2u+3\right), the least common multiple of 2u-3,4u^{2}-9,2u+3.
8u+12+10=2u-3
Use the distributive property to multiply 2u+3 by 4.
8u+22=2u-3
Add 12 and 10 to get 22.
8u+22-2u=-3
Subtract 2u from both sides.
6u+22=-3
Combine 8u and -2u to get 6u.
6u=-3-22
Subtract 22 from both sides.
6u=-25
Subtract 22 from -3 to get -25.
u=\frac{-25}{6}
Divide both sides by 6.
u=-\frac{25}{6}
Fraction \frac{-25}{6} can be rewritten as -\frac{25}{6} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}