Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{15}x\times 60x+60x\times 2.8=60x\times 63-3\times 3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60x, the least common multiple of 15,20x.
16xx+60x\times 2.8=60x\times 63-3\times 3
Multiply \frac{4}{15} and 60 to get 16.
16x^{2}+60x\times 2.8=60x\times 63-3\times 3
Multiply x and x to get x^{2}.
16x^{2}+168x=60x\times 63-3\times 3
Multiply 60 and 2.8 to get 168.
16x^{2}+168x=3780x-3\times 3
Multiply 60 and 63 to get 3780.
16x^{2}+168x=3780x-9
Multiply -3 and 3 to get -9.
16x^{2}+168x-3780x=-9
Subtract 3780x from both sides.
16x^{2}-3612x=-9
Combine 168x and -3780x to get -3612x.
16x^{2}-3612x+9=0
Add 9 to both sides.
x=\frac{-\left(-3612\right)±\sqrt{\left(-3612\right)^{2}-4\times 16\times 9}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -3612 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3612\right)±\sqrt{13046544-4\times 16\times 9}}{2\times 16}
Square -3612.
x=\frac{-\left(-3612\right)±\sqrt{13046544-64\times 9}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-3612\right)±\sqrt{13046544-576}}{2\times 16}
Multiply -64 times 9.
x=\frac{-\left(-3612\right)±\sqrt{13045968}}{2\times 16}
Add 13046544 to -576.
x=\frac{-\left(-3612\right)±12\sqrt{90597}}{2\times 16}
Take the square root of 13045968.
x=\frac{3612±12\sqrt{90597}}{2\times 16}
The opposite of -3612 is 3612.
x=\frac{3612±12\sqrt{90597}}{32}
Multiply 2 times 16.
x=\frac{12\sqrt{90597}+3612}{32}
Now solve the equation x=\frac{3612±12\sqrt{90597}}{32} when ± is plus. Add 3612 to 12\sqrt{90597}.
x=\frac{3\sqrt{90597}+903}{8}
Divide 3612+12\sqrt{90597} by 32.
x=\frac{3612-12\sqrt{90597}}{32}
Now solve the equation x=\frac{3612±12\sqrt{90597}}{32} when ± is minus. Subtract 12\sqrt{90597} from 3612.
x=\frac{903-3\sqrt{90597}}{8}
Divide 3612-12\sqrt{90597} by 32.
x=\frac{3\sqrt{90597}+903}{8} x=\frac{903-3\sqrt{90597}}{8}
The equation is now solved.
\frac{4}{15}x\times 60x+60x\times 2.8=60x\times 63-3\times 3
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60x, the least common multiple of 15,20x.
16xx+60x\times 2.8=60x\times 63-3\times 3
Multiply \frac{4}{15} and 60 to get 16.
16x^{2}+60x\times 2.8=60x\times 63-3\times 3
Multiply x and x to get x^{2}.
16x^{2}+168x=60x\times 63-3\times 3
Multiply 60 and 2.8 to get 168.
16x^{2}+168x=3780x-3\times 3
Multiply 60 and 63 to get 3780.
16x^{2}+168x=3780x-9
Multiply -3 and 3 to get -9.
16x^{2}+168x-3780x=-9
Subtract 3780x from both sides.
16x^{2}-3612x=-9
Combine 168x and -3780x to get -3612x.
\frac{16x^{2}-3612x}{16}=-\frac{9}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{3612}{16}\right)x=-\frac{9}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{903}{4}x=-\frac{9}{16}
Reduce the fraction \frac{-3612}{16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{903}{4}x+\left(-\frac{903}{8}\right)^{2}=-\frac{9}{16}+\left(-\frac{903}{8}\right)^{2}
Divide -\frac{903}{4}, the coefficient of the x term, by 2 to get -\frac{903}{8}. Then add the square of -\frac{903}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{903}{4}x+\frac{815409}{64}=-\frac{9}{16}+\frac{815409}{64}
Square -\frac{903}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{903}{4}x+\frac{815409}{64}=\frac{815373}{64}
Add -\frac{9}{16} to \frac{815409}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{903}{8}\right)^{2}=\frac{815373}{64}
Factor x^{2}-\frac{903}{4}x+\frac{815409}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{903}{8}\right)^{2}}=\sqrt{\frac{815373}{64}}
Take the square root of both sides of the equation.
x-\frac{903}{8}=\frac{3\sqrt{90597}}{8} x-\frac{903}{8}=-\frac{3\sqrt{90597}}{8}
Simplify.
x=\frac{3\sqrt{90597}+903}{8} x=\frac{903-3\sqrt{90597}}{8}
Add \frac{903}{8} to both sides of the equation.